精英家教网 > 高中数学 > 题目详情
2.点Q的直角坐标是$(1,-\sqrt{3},2)$,则它的柱坐标是(2,$\frac{5π}{3}$,2).

分析 根据柱坐标与直角坐标的对应关系列方程求出.

解答 解:设Q的柱坐标为(ρ,θ,h),
则ρ=$\sqrt{1+(-\sqrt{3})^{2}}$=2,h=2,
$\left\{\begin{array}{l}{2cosθ=1}\\{2sinθ=-\sqrt{3}}\end{array}\right.$,解得$\left\{\begin{array}{l}{cosθ=\frac{1}{2}}\\{sinθ=-\frac{\sqrt{3}}{2}}\end{array}\right.$,
又又0≤θ<2π,
∴θ=$\frac{5π}{3}$.
故答案为(2,$\frac{5π}{3}$,2).

点评 本题考查了柱坐标与直角坐标的对应关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.与点A(-3,2),B(1,1)的距离均为2的直线共有4条.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设F1为椭圆C1:$\frac{(x-1)^{2}}{16}+\frac{{y}^{2}}{12}$=1的左焦点,M是C1上任意一点,P是线段F1M的中点;
(])求动点P的轨迹C的方程;
(2)若直线y=kx+2交轨迹C于A,B两点,AB的中垂线交y轴于点Q(0,t),求t的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一个几何体的三视图如图所示,则该几何体的体积为4$\sqrt{3}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在极坐标系下,知圆O:ρ=cosθ+sinθ和直线$l:ρsin({θ-\frac{π}{4}})=\frac{{\sqrt{2}}}{2}({ρ≥0,0≤θ≤2π})$.
(1)求圆O与直线l的直角坐标方程;
(2)当θ∈(0,π)时,求圆O和直线l的公共点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某校高一、高二、高三年级学生人数分别是400、320、280,现采用分层抽样的方法抽取50人,参加学校举行的社会主义核心价值观知识竞赛,则样本中高二年级的人数是(  )
A.20B.16C.15D.14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$M:\frac{x^2}{2}+{y^2}=1$左、右焦点分别为F1、F2,点p为直线l:x+y=2上且不在x轴上的任意一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点;
(1)求△ABF2的周长;
(2)设直线PF1、PF2的斜率分别为k1、k2,证明:$\frac{1}{k_1}-\frac{3}{k_2}=2$;
(3)问直线l是否存在点P,使得直线OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD满足kOA+kOB+kOC+kOD=0?若存在,求出所有满足条件的点P的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.数列{an}的前n项和${S_n}=2{n^2}-3n({n∈{N^*}})$,则an=4n-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.椭圆的中心为坐标原点,长、短轴长之比为$\frac{2}{1}$,一个焦点是(0,-2),试求椭圆的离心率和椭圆的标准方程.

查看答案和解析>>

同步练习册答案