精英家教网 > 高中数学 > 题目详情
11.设实数$x∈(\frac{1}{e}\;,\;\;1)$,a=lnx,b=elnx,$c={e^{ln\frac{1}{x}}}$,则a,b,c的大小关系为a<b<c.(用“<”连接).

分析 依题意,由对数函数与指数函数的性质可求得-1<a<0,$\frac{1}{e}$<b<1,1<c<e,从而可得答案.

解答 解:∵x∈($\frac{1}{e}$,1),a=lnx
即-1<a<0;
又b=elnx为增函数,
∴$\frac{1}{e}$<b<1;
$c={e^{ln\frac{1}{x}}}$=$(\frac{1}{e})$lnx为减函数,
∴1<c<e,
∴a<b<c.
故答案为:a<b<c.

点评 本题考查有理数指数幂的化简求值,考查对数值大小的比较,掌握对数函数与指数函数的性质是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若数列{an}满足$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=d,(n∈N*,d为常数),则称数列{an}为调和数列,已知数列{$\frac{1}{{x}_{n}}$}为调和数列,且x1+x2+…+x10=100,则x4+x7=20.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设集合A={x|x2+2x-3>0},集合B={x|x2-2ax-1≤0,a>0}.若A∩B中恰含有一个整数,则实数a的取值范围是[$\frac{3}{4}$,$\frac{4}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f1(x)=sinx,fn+1(x)=fn(x)•fn′(x),其中fn′(x)是fn(x)的导函数(n∈N*),设函数
fn(x)的最小正周期是Tn
(1)Tn=$\frac{π}{{2}^{n-2}}$;
(2)若T1+T2+T3+…+Tn<k恒成立,则实数k的最小值是4π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知变量x,y满足约束条件$\left\{\begin{array}{l}x+y≥2\\ x-y≤2\\ 0≤y≤3\end{array}\right.$则目标函数y+2x的最小值为1,若目标函数z=y-ax仅在点(5,3)处取得最小值,则实数a的取值范围为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知A(1,1,1)、B(2,2,2)、C(3,2,4),求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合U={1,2,3,4,5},M={1,2,3},N={2,5},则M∩(∁UN)等于(  )
A.{2}B.{2,3}C.{3}D.{1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设f0(x)=cosx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(n∈N),则 f2012(x)=cosx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知在△ABC中A:B:C=1:2:3,则a:b:c=(  )
A.1:2:3B.3:2:1C.1:$\sqrt{3}$:2D.$\frac{{\sqrt{3}}}{2}$:1:2

查看答案和解析>>

同步练习册答案