精英家教网 > 高中数学 > 题目详情
精英家教网如图,过圆O外一点M作它的一条切线,切点为A,过A作直线AP垂直直线OM,垂足为P.
(1)证明:OM•OP=OA2
(2)N为线段AP上一点,直线NB垂直直线ON,且交圆O于B点.过B点的切线交直线ON于K.证明:∠OKM=90°.
分析:(1)在三角形OAM中考虑,因为MA是圆O的切线,所以OA⊥AM,从而由射影定理即得;
(2)结合(1)问的结论,利用比例线段证明两个三角形△ONP、△OMK相似,通过对应角相等即可得.
解答:证明:(1)因为MA是圆O的切线,
所以OA⊥AM,又因为AP⊥OM,
在Rt△OAM中,由射影定理知OA2=OM•OP,
故OM•OP=OA2得证.

(2)因为BK是圆O的切线,BN⊥OK,同(1)有:
OB2=ON•OK,又OB=OA,
所以OM•OP=ON•OK,即
ON
OP
=
OM
OK
,又∠NOP=∠MOK,
所以△ONP~△OMK,
故∠OKM=∠OPN=90°.
即有:∠OKM=90°.
点评:本题考查的高考考点是圆的有关知识及应用、切割线定理的运用,易错点:对有关知识掌握不到位而出错,高考对平面几何的考查一直要求不高,故要重点掌握,它是我们的得分点之一.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,过圆O外一点M作它的一条切线,切点为A,过A作直线AP垂直直线OM,垂足为P;N为线段AP上一点,直线NB垂直直线ON,且交圆O于B点;过B点的切线交直线ON于K,则∠OKM=
 

精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•洛阳一模)如图,过圆O外一点M作它的一条切线,切点为A,过A作直线AP垂直于直线OM,垂足为P,N为线段AP上一点,直线NB垂直于直线ON,且交圆O于B点.在B点处的切线交直线ON于K.
(1)证明:OM•OP=OB2
(2)证明:△ONP∽△OMK.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年宁夏、海南卷)(本小题满分10分)选修4-1:几何证明选讲

如图,过圆O外一点M作它的一条切线,切点为A,过A作直线AP垂直直线OM,垂足为P。

(1)证明:

(2)N为线段AP上一点,直线NB垂直直线ON,且交圆O于B点。过B点的切线交直线ON于K。证明:∠OKM = 90°。

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年海南省高三上学期教学质量监测考试文科数学 题型:解答题

(本小题满分10)选修4-1:几何证明选讲

    如图,过圆O外一点M作它的一条切线,切点为A,过A作直线AP垂直直线OM,垂足为P.

(1)证明:

(2)N为线段AP上一点,直线NB垂直直线ON,且交圆O于B点。过B点的切

     线交直线ON于K。证明:∠OKM = 90°.

 

查看答案和解析>>

同步练习册答案