精英家教网 > 高中数学 > 题目详情
在空间,下列命题正确的是(  )
A.平行直线的平行投影重合
B.平行于同一直线的两个平面平行
C.垂直于同一平面的两个平面平行
D.垂直于同一平面的两条直线平行
D
平行直线的平行投影可能平行,故选项A不正确;平行于同一直线的两个平面可能相交,故选项B不正确;垂直于同一平面的两个平面也可能相交.故选项C不正确;选项D是直线与平面垂直的性质定理,故选项D正确.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P-ABC中,△PAC,△ABC分别是以A、B为直角顶点的等腰直角三角形,AB=1.现给出三个条件:①PB=;②PB⊥BC;③平面PAB⊥平面ABC.试从中任意选取一个作为已知条件,并证明:PA⊥平面ABC;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体ABCD-A1B1C1D1中,对角线A1C与平面BDC1交于点O,AC、BD交于点M,E为AB的中点,F为AA1的中点.求证:
 
(1)C1、O、M三点共线;
(2)E、C、D1、F四点共面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,点C是以AB为直径的圆上的一点,直角梯形BCDE所在平面与圆O所在平面垂直,且DEBCDCBCDEBC.

(1)证明:EO∥平面ACD
(2)证明:平面ACD⊥平面BCDE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知abc是三条互不重合的直线,αβ是两个不重合的平面,给出
四个命题:①abbα,则aα;②ab?αaβbβ,则αβ;③aαaβ,则αβ;④aαbα,则ab.
其中正确的命题个数是 (  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,M是正方体ABCDA1B1C1D1的棱DD1的中点,给出下列四个命题:

①过M点有且只有一条直线与直线AB,B1C1都相交;
②过M点有且只有一条直线与直线AB,B1C1都垂直;
③过M点有且只有一个平面与直线AB,B1C1都相交;
④过M点有且只有一个平面与直线AB,B1C1都平行.
其中真命题是(  )
A.②③④B.①③④C.①②④D.①②③

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线l⊥平面α,直线m?平面β,给出下列命题:①α∥β⇒l⊥m.②α⊥β⇒l∥m.③l∥m⇒α⊥β.④l⊥m⇒α∥β,其中正确命题的序号是    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正方体ABCD-A1B1C1D1中,M,N分别是棱C1D1,C1C的中点.以下四个结论:

①直线AM与直线C1C相交;
②直线AM与直线BN平行;
③直线AM与直线DD1异面;
④直线BN与直线MB1异面.
其中正确结论的序号为   .(注:把你认为正确的结论序号都填上)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知平面α,β,γ,直线l,m满足:α⊥γ,γ∩α=m,γ∩β=l,l⊥m,那么①m⊥β;②l⊥α;③β⊥γ;④α⊥β.
由上述条件可推出的结论有________(请将你认为正确的结论的序号都填上).

查看答案和解析>>

同步练习册答案