精英家教网 > 高中数学 > 题目详情

函数y=f (x)是R上的增函数,则a+b>0是f (a)+f (b)>f (-a)+f (-b)的条件.


  1. A.
    充分不必要
  2. B.
    必要不充分
  3. C.
    充要
  4. D.
    不充分不必要
C
分析:题考查的知识点是充要条件的定义及函数的单调性,由a+b>0可知,a>-b,b>-a,又y=f(x)在R上为增函数,故f(a)>f(b),f(b)>f(-a),反过来,由增函数的概念也可推出,a+b>(-a)+(-b);根据充要条件的定义,我们易得到结论.
解答:∵a+b>0
∴a>-b,b>-a,
又∵y=f(x)在R上为增函数,
∴f(a)>f(b),f(b)>f(-a),
则f (a)+f (b)>f (-a)+f (-b)
反之,若f (a)+f (b)>f (-a)+f (-b)
∵y=f(x)在R上为增函数,
∴a+b>(-a)+(-b).
即a+b>0
故a+b>0是f (a)+f (b)>f (-a)+f (-b)的充要条件.
故选C
点评:判断充要条件的方法是:①若p?q为真命题且q?p为假命题,则命题p是命题q的充分不必要条件;②若p?q为假命题且q?p为真命题,则命题p是命题q的必要不充分条件;③若p?q为真命题且q?p为真命题,则命题p是命题q的充要条件;④若p?q为假命题且q?p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出定义:若m-
1
2
<x≤m+
1
2
(m∈Z),则称m为离实数x最近的整数,记作{x}=m,在此基础上给出下列关于函数f(x)=|x-{x}|的五个命题:
①函数y=f(x)的定义域为R,值域为[0,
1
2
]

②函数y=f(x)是周期函数,最小正周期为1;
③函数y=f(x)在[-
1
2
1
2
]
上是增函数;
④函数y=f(x)的图象关于直线x=
k
2
(k∈Z)对称;
⑤函数y=f(x)的图象关于点(k,0)(k∈Z)对称.
其中正确的命题有(  )个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是二次函数,且f(0)=8,f(x+1)-f(x)=-2x+1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求证f(x)在区间[1,+∞)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,且f(2)=0,对任意x∈R,都有f(x+4)=f(x)+f(4)成立,则f(2008)=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x+
π
3
)
,给出下列命题:①f(x)的图象可以看作是由y=sin2x的图象向左平移
π
6
个单位而得;②f(x)的图象可以看作是由y=sin(x+
π
6
)的图象保持纵坐标不变,横坐标缩小为原来的
1
2
而得;③函数y=|f(x)|的最小正周期为
π
2
;④函数y=|f(x)|是偶函数.其中正确的结论是:
①③
①③
.(写出你认为正确的所有结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)若函数y=f(x)是函数y=2x的反函数,则f(2)的值是(  )

查看答案和解析>>

同步练习册答案