精英家教网 > 高中数学 > 题目详情
如图,已知三棱锥O﹣ABC的侧棱OA,OB,OC两两垂直,且OA=1,OB=OC=2,E是OC的中点.
(1)求O点到面ABC的距离;
(2)求异面直线BE与AC所成的角;
(3)求二面角E﹣AB﹣C的大小.
解:(1)取BC的中点D,连AD、OD
因为OB=OC,
则OD⊥BC、AD⊥BC,
∴BC⊥面OAD.
过O点作OH⊥AD于H,则OH⊥面ABC,OH的长就是所求的距离.
又BC=2,OD==
又OA⊥OB,OA⊥OC
∴OA⊥面OBC,则OA⊥OD
AD==
在直角三角形OAD中,有OH=
(2)取OA的中点M,连EM、BM,
则EM∥AC,DBEM是异面直线BE与AC所成的角,
易求得EM=,BE=,BM=
由余弦定理可求得cosDBEM=,∴∠BEM=arccos
(3)连CH并延长交AB于F,连OF、EF.由OC⊥面OAB,得OC⊥AB,又OH⊥面ABC,
所以CF⊥AB,EF⊥AB,则DEFC就是所求的二面角的平面角.
作EG⊥CF于G,
则EG=OH=
在Rt△OAB中,OF=
在Rt△OEF中,EF=
∴sin∠EFG=
∠EFG=arcsin
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,且OA=1,OB=OC=2,E是OC的中点.
(1)求异面直线BE与AC所成角的余弦值;
(2)求二面角A-BE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,且OA=1,OB=OC=2,E是OC的中点.
(1)求O点到面ABC的距离;
(2)求异面直线BE与AC所成的角;
(3)求二面角E-AB-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,且OA=1,OB=OC=2,E是OC的中点.
(1)求异面直线BE与AC所成角的余弦值;
(2)求直线BE和平面ABC的所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,且OA=2,OB=2,OC=4,E是OC的中点,求二面角E-AB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知三棱锥O-ABC中,
OA
=
a
OB
=
b
OC
=
c
,G点为△OBC的重心,则
AG
=(  )
A、
1
3
a
-
b
+
1
3
c
B、-
a
+
1
3
b
+
1
3
c
C、
1
3
a
+
1
3
b
-
c
D、-
a
+
2
3
b
+
2
3
c

查看答案和解析>>

同步练习册答案