精英家教网 > 高中数学 > 题目详情
如图,矩形ABCD是机器人踢足球的场地,AB=170cm,AD=80cm,机器人先从AD的中点E进入场地到点F处,EF=40cm,EF⊥AD.场地内有一小球从B点向A点运动,机器人从F点出发去截小球,现机器人和小球同时出发,它们均作匀速直线运动,并且小球运动的速度是机器人行走速度的2倍.若忽略机器人原地旋转所需的时间,则机器人最快可在何处截住小球?

【答案】分析:设机器人最快可在点G处截住小球,点G在线段AB上,设FG为xcm,表示出BG和AG因为三角形AEF为等腰直角三角形,可得角FAG为45°,在三角形AFG中根据余弦定理求出FG即可.
解答:解:设该机器人最快可在点G处截住小球,点G在线段AB上.
设FG=xcm.根据题意,得BG=2xcm.
则AG=AB-BG=(170-2x)(cm).
连接AF,在△AEF中,EF=AE=40cm,EF⊥AD,
所以∠EAF=45°,
于是∠FAG=45°.在△AFG中,由余弦定理,
得FG2=AF2+AG2-2AF•AGcos∠FAG.
所以
解得
所以AG=170-2x=70(cm),或(不合题意,舍去).
答:该机器人最快可在线段AB上离A点70cm处截住小球.
点评:考查学生根据实际问题选择函数类型的能力,利用余弦定理求边的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,矩形ABCD是机器人踢足球的场地,AB=170cm,AD=80cm,机器人先从AD的中点E进入场地到点F处,EF=40cm,EF⊥AD.场地内有一小球从B点向A点运动,机器人从F点出发去截小球,现机器人和小球同时出发,它们均作匀速直线运动,并且小球运动的速度是机器人行走速度的2倍.若忽略机器人原地旋转所需的时间,则机器人最快可在何处截住小球?
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)

       如图,矩形ABCD是机器人踢球的场地,AB=170cm,AD=80cm,机器人先从AD中点E进入场地到点F处,EF=40cm,EF⊥AD。场地内有一小球从B点向A点运动,机器人从F点出发去截小球。现机器人和小球同时出发,它们均作直线运动,并且小球运动的速度是机器人行走速度的2倍。若忽略机器人圆底旋转所需的时间,则机器人最快可在何处截住小球?

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省盐城市大冈中学高三学情分析数学试卷(1)(解析版) 题型:解答题

如图,矩形ABCD是机器人踢足球的场地,AB=170cm,AD=80cm,机器人先从AD的中点E进入场地到点F处,EF=40cm,EF⊥AD.场地内有一小球从B点向A点运动,机器人从F点出发去截小球,现机器人和小球同时出发,它们均作匀速直线运动,并且小球运动的速度是机器人行走速度的2倍.若忽略机器人原地旋转所需的时间,则机器人最快可在何处截住小球?

查看答案和解析>>

科目:高中数学 来源:江苏省南京市2010届高三上学期期末考试 题型:解答题

 

    如图,矩形ABCD是机器人踢球的场地,AB=170cm,AD=80cm,机器人先从AD中点E进入场地到点F处,EF=40cm,EF⊥AD。场地内有一小球从B点向A点运动,机器人从F点出发去截小球。现机器人和小球同时出发,它们均作直线运动,并且小球运动的速度是机器人行走速度的2倍。若忽略机器人圆底旋转所需的时间,则机器人最快可在何处截住小球?

 

 

 

 

 

 

 

 

 


 

查看答案和解析>>

同步练习册答案