精英家教网 > 高中数学 > 题目详情
设函数f(x)=xsinx ,  x∈[ -
π
2
 , 
π
2
 ]
,若f(x1)>f(x2),则下列不等式必定成立的是(  )
A、x1+x2>0
B、x12>x22
C、x1>x2
D、x1<x2
分析:由题意可得:f(x)=f(|x|),结合导数可得f′(|x|)>0,所以f(|x|)在[ 0 ,
π
2
]
上为增函数,又由f(x1)>f(x2),得f(|x1|)>f(|x2|),进而根据函数的单调性得到答案.
解答:解:由题意可得:f(x)=f(|x|),
因为当x∈[ 0 , 
π
2
 ]
时,f′(|x|)=sinx+xcosx>0,
所以此时f(|x|)为增函数.
又由f(x1)>f(x2),得f(|x1|)>f(|x2|),
故|x1|>|x2||,
所以x12>x22
故选B.
点评:本题考查运用奇函数、偶函数与增函数的概念与性质解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

借助计算机(器)作某些分段函数图象时,分段函数的表示有时可以利用函数S(x)=
1,x≥0
0,x<0.
例如要表示分段函数g(x)=
x,x>2
0,x=2
-x,x<2.
可以将g(x)表示为g(x)=xS(x-2)+(-x)S(2-x).
设f(x)=(-x2+4x-3)S(x-1)+(x2-1)S(1-x).
(Ⅰ)请把函数f(x)写成分段函数的形式;
(Ⅱ)设F(x)=f(x-k),且F(x)为奇函数,写出满足条件的k值;(不需证明)
(Ⅲ)设h(x)=(x2-x+a-a2)S(x-a)+(x2+x-a-a2)S(a-x),求函数h(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

借助计算机(器)作某些分段函数图象时,分段函数的表示有时可以利用函数数学公式例如要表示分段函数数学公式可以将g(x)表示为g(x)=xS(x-2)+(-x)S(2-x).
设f(x)=(-x2+4x-3)S(x-1)+(x2-1)S(1-x).
(Ⅰ)请把函数f(x)写成分段函数的形式;
(Ⅱ)设F(x)=f(x-k),且F(x)为奇函数,写出满足条件的k值;(不需证明)
(Ⅲ)设h(x)=(x2-x+a-a2)S(x-a)+(x2+x-a-a2)S(a-x),求函数h(x)的最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市朝阳区陈经纶中学高一(上)期中数学试卷(解析版) 题型:解答题

借助计算机(器)作某些分段函数图象时,分段函数的表示有时可以利用函数例如要表示分段函数可以将g(x)表示为g(x)=xS(x-2)+(-x)S(2-x).
设f(x)=(-x2+4x-3)S(x-1)+(x2-1)S(1-x).
(Ⅰ)请把函数f(x)写成分段函数的形式;
(Ⅱ)设F(x)=f(x-k),且F(x)为奇函数,写出满足条件的k值;(不需证明)
(Ⅲ)设h(x)=(x2-x+a-a2)S(x-a)+(x2+x-a-a2)S(a-x),求函数h(x)的最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市朝阳区陈经纶中学高一(上)期中数学试卷(解析版) 题型:解答题

借助计算机(器)作某些分段函数图象时,分段函数的表示有时可以利用函数例如要表示分段函数可以将g(x)表示为g(x)=xS(x-2)+(-x)S(2-x).
设f(x)=(-x2+4x-3)S(x-1)+(x2-1)S(1-x).
(Ⅰ)请把函数f(x)写成分段函数的形式;
(Ⅱ)设F(x)=f(x-k),且F(x)为奇函数,写出满足条件的k值;(不需证明)
(Ⅲ)设h(x)=(x2-x+a-a2)S(x-a)+(x2+x-a-a2)S(a-x),求函数h(x)的最小值.

查看答案和解析>>

同步练习册答案