(12分)已知{an}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16。
(1)求数列{an}的通项公式;
(2)若数列{an}和数列{bn}满足等式:an=
+
+
+……+
,(n
N+),
求数列{bn}的前n项和Sn。
(1)an=a3+(n-3)d=2n-1;(2)当n=1时,S1=b1=2
当n≥2时,Sn=b1+b2+b3+……+bn =2+
=2n+2-6
【解析】求一个数列的前n项和应该先求出数列的通项,利用通项的特点,然后选择合适的求和的方法.
(1)将已知条件a3a6=55,a2+a7=16,利用等差数列的通项公式用首项与公差表示,列出方程组,求出首项与公差,进一步求出数列{an}的通项公式
(2)将已知等式仿写出一个新等式,两个式子相减求出数列{bn}的通项,利用等比数列的前n项和公式求出数列{bn}的前n项和Sn.
解:(1)由等差数列的性质得:a2+a7=a3+a6
∴
,解得:
或![]()
∵{an}的公差大于0 ∴{an}单增数列
∴a3=5,a6=11 ∴公差d=
=
=2
∴an=a3+(n-3)d=2n-1
(2)当n=1时,a1=
∴b1=2
当n≥2时,an=
+
+
+…+![]()
an-1=
+
+
+…+![]()
两式相减得:an-a n-1=![]()
∴bn=2n+1,n≥2
![]()
∴当n=1时,S1=b1=2
当n≥2时,Sn=b1+b2+b3+……+bn
=2+
=2n+2-6
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
|
|
查看答案和解析>>
科目:高中数学 来源:温州一模 题型:填空题
查看答案和解析>>
科目:高中数学 来源:2005年浙江省温州市高考数学一模试卷(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com