精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=cos(x-$\frac{π}{4}$)-sin(x-$\frac{π}{4}$).
(Ⅰ)判断函数f(x)的奇偶性,并给出证明;
(Ⅱ)若θ为第一象限角,且f(θ+$\frac{π}{3}$)=$\frac{\sqrt{2}}{3}$,求cos(2θ+$\frac{π}{6}$)的值.

分析 (Ⅰ)结论:函数f(x)为定义在R上的偶函数,由函数f(x)的定义域为R,关于原点对称,求出f(x)和f(-x)即可证得结论;
(Ⅱ)由已知条件求出$cos(θ+\frac{π}{3})$,再由θ为第一象限角,求出$sin(θ+\frac{π}{3})$,然后利用三角函数的诱导公式化简计算即可得答案.

解答 解:(Ⅰ)结论:函数f(x)为定义在R上的偶函数.
证明:函数f(x)的定义域为R,关于原点对称,
f(x)=cos(x-$\frac{π}{4}$)-sin(x-$\frac{π}{4}$)=$\sqrt{2}cos[(x-\frac{π}{4})+\frac{π}{4}]=\sqrt{2}cosx$
f(-x)=$\sqrt{2}cos(-x)=\sqrt{2}cosx=f(x)$.
因此,函数f(x)为定义在R上的偶函数;
(Ⅱ)∵f(θ+$\frac{π}{3}$)=$\sqrt{2}cos(θ+\frac{π}{3})=\frac{\sqrt{2}}{3}$,
∴$cos(θ+\frac{π}{3})=\frac{1}{3}$.
由于θ为第一象限角,故$sin(θ+\frac{π}{3})=\frac{2\sqrt{2}}{3}$,
∴cos(2θ+$\frac{π}{6}$)=$cos[2(θ+\frac{π}{3})-\frac{π}{2}]=sin[2(θ+\frac{π}{3})]$
=$2sin(θ+\frac{π}{3})cos(θ+\frac{π}{3})=2×\frac{2\sqrt{2}}{3}×\frac{1}{3}$=$\frac{4\sqrt{2}}{9}$.

点评 本题考查了正弦函数的图象,考查了三角函数的化简求值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.将含有3n个正整数的集合M分成元素个数相等且两两没有公共元素的三个集合A、B、C,其中A={a1,a2,…,an},B={b1,b2,…,bn},C={c1,c2,…,cn},若A、B、C中的元素满足条件:c1<c2<…<cn,ak+bk=ck,k=1,2,…,n,则称M为“完并集合”.
(1)若M={1,x,3,4,5,6}为“完并集合”,求x的值;
(2)对于“完并集合”M={1,2,3,4,5,6,7,8,9,10,11,12},在所有符合条件的集合C中,求元素乘积最小的集合C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.小芳投掷一枚均匀的骰子,则它投掷得的点数为奇数的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{1}{12}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.sin80°cos70°+sin10°sin70°=(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=$\frac{lg(x+1)}{x}$的定义域为(-1,0)∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线$\sqrt{3}$x-y+3=0的倾斜角是(  )
A.30°B.45°C.60°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知定义在R上的函数f(x)满足:①f(x)+f(2-x)=0;②f(x-2)=f(-x),③在[-1,1]上表达式为f(x)=$\sqrt{1-{x}^{2}}$,则函数f(x)与函数g(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{1-x,x>0}\end{array}\right.$的图象在区间[-3,3]上的交点个数为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.一个半径是R的扇形,其周长为4R,则该扇形圆心角的弧度数为(  )
A.1B.2C.πD.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow{a}$=(cos40°,sin40°),$\overrightarrow{b}$=(sin20°,cos20°),$\overrightarrow{u}$=$\sqrt{3}$$\overrightarrow{a}$+λ$\overrightarrow{b}$(其中λ∈R),则|$\overrightarrow{u}$|的最小值为(  )
A.$\frac{{\sqrt{6}}}{2}$B.$\frac{3}{4}$C.$\frac{{\sqrt{3}}}{2}$D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案