精英家教网 > 高中数学 > 题目详情
如果点P在平面区域
2x-y+2≥0
x-2y+1≤0
x+y-2≤0
上,点Q在曲线x2+(y+2)2=1上,那么|PQ|的最小值为(  )
A、
5
-1
B、
4
5
-1
C、2
2
-1
D、
2
-1
分析:先画出满足
2x-y+2≥0
x-2y+1≤0
x+y-2≤0
的平面区域,再把|PQ|的最小值转化为点P到(0,-2)的最小值减去圆的半径1即可.
解答:精英家教网解:由题可知不等式组确定的区域为阴影部分包括边界,点P到Q的距离最小为到(0,-2)的最小值减去圆的半径1,
点(0,-2)到直线x-2y+1=0的距离为
|4+1|
5
=
5

由图可知:|PQ|min=
5
-1,
故选A.
点评:本题属于线性规划中的延伸题,对于可行域不要求线性目标函数的最值,而是求可行域内的点与(0,-2)之间的距离问题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果点P在平面区域
2x-y+2≥0
x-2y+1≤0
x+y-2≤0
上,点Q在曲线x2+(y+2)2=1上,那么|PQ|的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果点P在平面区域
2x-y+2≥0
x-2y+1≤0
x+y-2≤0
上,点Q在曲线x2+(y+2)2=2上,那么|PQ|的最小值为
5
-
2
5
-
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如果点P在平面区域
2x-y+2≥0
x+y-2≤0
2y-1≥0
上,点Q在曲线x2+(y+3)2=1上,那么|PQ|的最小值为
5
2
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如果点P在平面区域
2x-y+2≥0
x+y-2≤0
y-1≥0
内,点Q在曲线(x+2)2+y2=
1
4
上,那么|PQ|的最小值为(  )
A、
1
2
B、
13
-1
2
C、
10
-1
2
D、
2
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

如果点P在平面区域
2x-y+2≥0
x+y-2≤0
2y-1≥0
内,点Q(0,-2),那么|PQ|的最小值为(  )

查看答案和解析>>

同步练习册答案