精英家教网 > 高中数学 > 题目详情
圆心在抛物线x2=2y(x<0)上,并且与抛物线的准线及y轴相切的圆的方程为(  )
A、(x-1)2+(y-)2=1
B、(x+1)2+(y-)2=1
C、(x+1)2+(y-)2=
1
4
D、(x-1)2+(y+)2=
1
4
分析:由题意设出圆心坐标,由相切列出方程求出圆心坐标和半径,代入标准方程即可.
解答:解:由题意知,设P(t,
1
2
t2)为圆心且t<0,且准线方程为y=
1
2

∵与抛物线的准线及y轴相切,
∴-t=t2+
1
2
|?t=-1.
故选B.
点评:本题考查了求圆的标准方程,利用圆与直线相切的条件:圆心到直线的距离等于半径,求出圆心坐标和半径,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知圆C的圆心在抛物线x2=2py(p>0)上运动,且圆C过A(0,p)点,若MN为圆C在x轴上截得的弦.
(1)求弦长MN;
(2)设AM=l1,AN=l2,求
l1
l2
+
l2
l1
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•镇江一模)圆心在抛物线x2=2y上,并且和抛物线的准线及y轴都相切的圆的标准方程为
(x±1)2+(y-
1
2
)2=1
(x±1)2+(y-
1
2
)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•惠州模拟)若动圆的圆心在抛物线x2=12y上,且与直线y+3=0相切,则此动圆恒过定点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

圆心在抛物线x2=2y上,与直线2x+2y+3=0相切的圆中,面积最小的圆的方程为
(x+1)2+(y-
1
2
)2=
1
2
(x+1)2+(y-
1
2
)2=
1
2

查看答案和解析>>

同步练习册答案