精英家教网 > 高中数学 > 题目详情
12.设数列{an}满足,${a_n}=1+\frac{1}{{{a_{n-1}}}}(n>1)$,${a_5}=\frac{8}{5}$,则a1=1.

分析 由已知得${a}_{n-1}=\frac{1}{{a}_{n}-1}$,由此根据${a_5}=\frac{8}{5}$,利用递推思想能求出a1的值.

解答 解:∵数列{an}满足,${a_n}=1+\frac{1}{{{a_{n-1}}}}(n>1)$,
∴${a}_{n-1}=\frac{1}{{a}_{n}-1}$,
∵${a_5}=\frac{8}{5}$,
∴${a}_{4}=\frac{1}{\frac{8}{5}-1}$=$\frac{5}{3}$,
${a}_{3}=\frac{1}{\frac{5}{3}-1}$=$\frac{3}{2}$,
${a}_{2}=\frac{1}{\frac{3}{2}-1}$=2,
a1=$\frac{1}{2-1}$=1.
故答案为:1.

点评 本题考查数列的首项的求法,是基础题,解题时要认真审题,注意递推思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.设f(x)=lnx,f'(x)是f(x)的导数,若$g(x)=f(x)-\frac{2}{f'(x)}-a$有两个不相同的零点,则实数a的取值范围是(-∞,ln$\frac{1}{2}$-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知m>0,n>0,f(x)=|x+m|+|2x-n|.
(1)求f(x)的最小值;
(2)若f(x)的最小值为2,求m2+$\frac{n^2}{4}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某企业生产一种产品.日销售量x(x∈N*,x≤40)(百件)与产品销售价格p(万元/百件)之间的关系为p(x)=32-$\frac{16x}{x+2}$,已知生产x(百件)该产品所需的成本C(x)=17x-10(万元) 
(1)把该产品每天的利润f(x)表示成日产量x的函数:
(2)求当日产量为多少时,生产该产品每天获得的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求圆x2+y2-2x+4y+1=0的圆心到双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1经过一、三象限的渐近线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知各项为正的数列{an}的前n项和为Sn,数列{an}满足Sn=$\frac{{{a}_{n}}^{2}+{a}_{n}}{2}$.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=$\frac{1}{({a}_{n}+1)^{2}}$,它的前n项和为Tn,求证:对任意正整数n,都有Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,BC=2AD=4.AB=2BC=2CD=2$\sqrt{5}$,M为棱PC上一点.
(1)求证:平面BDM⊥平面PAD;
(2)当三棱锥P-ABD的体积是三棱锥M-PBD体积的3倍时,求$\frac{PM}{MC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点$M({-6,3\sqrt{5}})$在双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的渐近线上,C的焦距为12,则C的方程为(  )
A.$\frac{x^2}{8}-\frac{y^2}{10}=1$B.$\frac{x^2}{10}-\frac{y^2}{8}=1$C.$\frac{x^2}{16}-\frac{y^2}{20}=1$D.$\frac{x^2}{20}-\frac{y^2}{16}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C的对称中心为坐标原点O,焦点在x轴上,左右焦点分别为F,F,左右顶点分别为A,B,且|F1F2|=4,|AB|=4$\sqrt{2}$
(1)求椭圆的方程;
(2)过F1的直线l与椭圆C相交于M,N两点,若△MF2N的面积为$\frac{16}{3}$,求直线l的方程.

查看答案和解析>>

同步练习册答案