精英家教网 > 高中数学 > 题目详情
设f(3x)=
9x+5
2
,则f(1)的值是(  )
A、
7
B、7
C、2
D、
2
考点:函数的值
专题:计算题,函数的性质及应用
分析:变形为f(1)=f(3×
1
3
),代入函数等式即可.
解答: 解:∵f(3x)=
9x+5
2

∴f(1)=f(3×
1
3
)=
1
3
+5
2
=
4
=2,
故选:C
点评:本题考查了函数的概念,运用解析式求解函数值,属于容易的计算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

摇两颗骰子,求下列事件发生的概率:
(1)两颗骰子向上点数一样;
(2)两颗骰子向上点数和大于6;
(3)两颗骰子向上点数和为偶数;
(4)两颗骰子向上点数和小于7.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
4-x
x-1
+log4
(x+1)的定义域是(  )
A、(0,1)∪(1,4]
B、[-1,1)∪(1,4]
C、(-1,4)
D、(-1,1)∪(1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:(a-1)x+ay-3a+2=0,直线l2:2x+4y+2a-1=0,a是实数.
(1)若l1⊥l2,求a的值及l1与l2的交点坐标;
(2)若l1∥l2,求a的值及l1与l2的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn
(1)若数列{an}是首项为1,公比为2的等比数列,求常数m,t的值,使Sn=man+t对一切大于零的自然数n都成立.
(2)若数列{an}是首项为a1,公差d≠0的等差数列,证明:存在常数m,t,b使得Sn=man2+tan+b对一切大于零的自然数n都成立,且t=
1
2

(3)若数列{an}满足Sn=man2+tan+b,n∈N+,m、t、b(m≠0)为常数,且Sn≠0,证明:当t=
1
2
时,数列{an}为等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①数列{an}的前n项和Sn=3n2-n+1,则该数列是等差数列;
②各项都为正数的等比数列{an}中,如果公比q>1,那么等比数列{an}是递增数列;
③等比数列1,a,a2,a3,…(a≠0)的前n和为Sn=
1-an
1-a

④等差数列{an}的前n项和为Sn,若S9<0,S10>0,则此数列的前5项和最小.
其中正确命题为
 
(填上所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+x.
(1)判断函数f(x)的奇偶性,并证明你的结论;
(2)求证:f(x)是R上的增函数;
(3)若f(m+1)+f(2m-3)<0,求m的取值范围.
(参考公式:a3-b3=(a-b)(a2+ab+b2))

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+(y-1)2=1,圆D:x2+y2-2mx=0.
(1)若直线x+y-a=0与圆C有公共点,求实数a的取值范围;
(2)若点A(x,y)是圆C上的任一点,且x2+y2-(m+
2
2
)x-(m+
2
2
)y≤0(m∈R)恒成立,判断圆C与圆D的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

抽查10件产品,设事件A:至少有2件次品,则A的对立事件为(  )
A、至多有2件次品
B、至多有1件次品
C、至多有2件正品
D、至多有1件正品

查看答案和解析>>

同步练习册答案