精英家教网 > 高中数学 > 题目详情
已知n∈N*,数列{dn}满足,数列{an}满足an=d1+d2+d3+…+d2n;数列{bn}为公比大于1的等比数列,且b2,b4为方程x2-20x+64=0的两个不相等的实根.
(Ⅰ)求数列{an}和数列{bn}的通项公式;
(Ⅱ)将数列{bn}中的第a1项,第a2项,第a3项,…,第an项,…删去后剩余的项按从小到大的顺序排成新数列{cn},求数列{cn}的前2013项和.
【答案】分析:(I)先根据an=d1+d2+d3+…+d2n直接得出数列{an}的通项公式;利用b2,b4为方程x2-20x+64=0的两个不相等的实数根,列方程解得b2=4,b4=16,从而由等比数列的通项公式得数列{bn}的通项公式;
(II)由题知将数列{bn}中的第3项、第6项、第9项…删去后构成的新数列{cn}中的奇数列与偶数列仍成等比数列,求得数列{bn}的通项公式,再利用等比数列的前n项和公式求数列{cn}的前2013项和即可.
解答:解:(Ⅰ)∵
∴an=d1+d2+d3+…+d2n=…(3分)
因为b2,b4为方程x2-20x+64=0的两个不相等的实数根.
所以b2+b4=20,b2•b4=64…(4分)
解得:b2=4,b4=16,
所以:…(6分)
(Ⅱ)由题知将数列{bn}中的第3项、第6项、第9项…删去后构成的新数列{cn}中的奇数列与偶数列仍成等比数列,
首项分别是b1=2,b2=4公比均是8,…(9分)
T2013=(c1+c3+c5+…+c2013)+(c2+c4+c6+…+c2012
=…(12分)
点评:本题主要考查了等差、等比数列的通项公式和前n项和公式的运用,一般数列的求和方法,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-4
x
+4(x≥4)
的反函数为f-1(x),数列{an}满足:a1=1,an+1=f-1(an)(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足:bn
4an
3n
成等比数列,数列{bn}的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4x-2
x+1
(x≠-1,x∈R)
,数列{an}满足 a1=a(a≠-1,a∈R),an+1=f(an)(n∈N*).
(1)若数列{an}是常数列,求a的值;
(2)当a1=4时,记bn=
an-2
a n-1
(n∈N*)
,证明数列{bn}是等比数列,并求出通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x+1
x+2
(x≠-2,x∈R)
,数列{an}满足a1=a(a≠-2,a∈R),an+1=f(an)(n∈N*).
(1)若数列{an}是常数列,求a的值;
(2)当a1=2时,记bn=
an-1
a n+1
(n∈N*)
,证明数列{bn}是等比数列,并求出通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济宁二模)已知n∈N*,数列{dn}满足dn=
3+(-1)n2
,数列{an}满足an=d1+d2+d3+…+d2n;数列{bn}为公比大于1的等比数列,且b2,b4为方程x2-20x+64=0的两个不相等的实根.
(Ⅰ)求数列{an}和数列{bn}的通项公式;
(Ⅱ)将数列{bn}中的第a1项,第a2项,第a3项,…,第an项,…删去后剩余的项按从小到大的顺序排成新数列{cn},求数列{cn}的前2013项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)已知n∈N*,数列{dn}满足dn=
3+(-1)n
2
,数列{an}满足an=d1+d2+d3+…+d2n;又知数列{bn}中,b1=2,且对任意正整数m,n,
b
m
n
=
b
n
m

(Ⅰ)求数列{an}和数列{bn}的通项公式;
(Ⅱ)将数列{bn}中的第a1项,第a2项,第a3项,…,第an项,…删去后,剩余的项按从小到大的顺序排成新数列{cn},求数列{cn}的前2013项和.

查看答案和解析>>

同步练习册答案