精英家教网 > 高中数学 > 题目详情
7.在锐角△ABC中,a,b,c为角A,B,C所对的三边,设向量$\overrightarrow{m}$=(cosA,sinA),$\overrightarrow{n}$=(cosA,-sinA),且$\overrightarrow{m}$与$\overrightarrow{n}$的夹角为$\frac{2π}{3}$.
(1)求角A的值;
(2)若a=$\sqrt{3}$,设内角B为x,△ABC的周长为y,求y=f(x)的最大值.

分析 (1)由题知:|$\overrightarrow{m}$|=|$\overrightarrow{n}$|=1,cos$\frac{2π}{3}$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=cos2A-sin2A,由此能求出A.
(2)由正弦定理,得b=2sinx,c=2sin(120°-x),(x<120°),从而y=$\sqrt{3}+2sinx+2sin(120°-x),x<120°$,利用导数性质能求出y=f(x)的最大值.

解答 解:(1)∵向量$\overrightarrow{m}$=(cosA,sinA),$\overrightarrow{n}$=(cosA,-sinA),
∴由题知:|$\overrightarrow{m}$|=|$\overrightarrow{n}$|=1,
∵$\overrightarrow{m}$与$\overrightarrow{n}$的夹角为$\frac{2π}{3}$,
∴cos$\frac{2π}{3}$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=cos2A-sin2A,即cos2A=-$\frac{1}{2}$,
又∵0<A<$\frac{π}{2}$,0<2A<π,
∴2A=$\frac{2π}{3}$,故A=$\frac{π}{3}$.
(2)由正弦定理,得$\frac{a}{sinA}=\frac{\sqrt{3}}{sin\frac{π}{3}}$=$\frac{b}{sinB}=\frac{c}{sinC}$=2,
b=2sinx,c=2sin(120°-x),(x<120°),
∴y=$\sqrt{3}+2sinx+2sin(120°-x),x<120°$
y′=2cosx-2cos(120°-x),
令y′=2cosx-2cos(120°-x)=0,得x=60°,
∴x=60°时,y=f(x)取最大值ymax=$\sqrt{3}+2sin60°+2sin60°$=3$\sqrt{3}$.

点评 本题考查角的大小的求法,考查三角形周长的求法,是中档题,解题时要认真审题,注意导数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=x2-4|x|-5
(1)画出y=f(x)的图象;
(2)写出函数的单调区间;
(3)若方程f(x)=k+1有两解.求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如果集合A中的元素有n个,试用含n的式子表示集合A的子集、真子集及非空真子集的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若θ在第四象限,则sin(cosθ)•cos(sinθ)的值为(  )
A.正值B.负值C.D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=$\left\{\begin{array}{l}{2{x}^{2}(0≤x<1)}\\{2(1≤x<2)}\\{3(x≥2)}\end{array}\right.$的值域是(  )
A.RB.[0,+∞)C.[0,3]D.[0,2]∪{3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=4cosxsin({x+\frac{π}{6}})-1$.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在区间$[{-\frac{π}{6},\frac{π}{4}}]$上函数值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,角A、B、C所对应的边为a,b,c.若a=1,c=$\sqrt{3}$,∠C=$\frac{2π}{3}$,则b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)对于一切实数x,y都有f(x+y)=f(x)+f(y)成立.
(1)求f(0);
(2)求证:函数f(x)是奇函数;
(3)若f(x)在[0,+∞)上是增函数,解不等式:f(lgx-1)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设命题p:?x≥0,都有x2+3x+2≥0,则?p为(  )
A.?x<0,使得x2+3x+2<0B.?x<0,使得x2+3x+2>0
C.?x>0,使得x2+3x+2<0D.?x≥0,使得x2+3x+2<0

查看答案和解析>>

同步练习册答案