精英家教网 > 高中数学 > 题目详情
9.高三学生在新的学期里,刚刚搬入新教室,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高,当教室在第n层楼时,上下楼造成的不满意度为n,但高处空气清新,嘈杂音较小,环境较为安静,因此随教室所在楼层升高,环境不满意度降低,设教室在第n层楼时,环境不满意度为$\frac{8}{n}$,则同学们认为最适宜的教室应在(  )
A.2楼B.3楼C.4楼D.8楼

分析 同学们总的不满意度y=n+$\frac{8}{n}$,由此利用基本不等式能求出同学们认为最适宜的教室应在3楼.

解答 解:由题意知同学们总的不满意度y=n+$\frac{8}{n}$≥2$\sqrt{n×\frac{8}{n}}$=4$\sqrt{2}$,
当且仅当n=$\frac{8}{n}$,即2$\sqrt{2}$≈3时,不满意度最小,
∴同学们认为最适宜的教室应在3楼.
故选:B.

点评 本题考查函数在生产生活中的实际应用,是基础题,解题时要认真审题,注意基本不等式性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知函数y=f(x)是定义在[a,b]上的增函数,其中a,b∈R,且0<b<-a.设函数F(x)=[f(x)]2-[f(-x)]2,且F(x)不恒等于0,则对于F(x)有如下说法:
①定义域为[-b,b]
②是奇函数   
③最小值为0
④在定义域内单调递增
其中正确说法的序号是①②.(写出所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知x>0,y>0,且x+y+xy=1,则xy的最大值为(  )
A.1+$\sqrt{3}$B.$\sqrt{3}$-1C.4-2$\sqrt{3}$D.3-2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,△ABC内接于圆,AD切圆于A,E是BA延长线上一点,连接CE交AD于D点.若D是CE的中点.求证:AC2=AB•AE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若(1+i)z=2,则|z|是(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知f(x)是定义在R上的偶函数,在(0,+∞)是增函数,且f(1)=0,则f(x+1)<0的解集为(-2,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在区间[0,π]上随机取一个数θ,则使$\sqrt{2}≤\sqrt{2}sinθ+\sqrt{2}cosθ≤2$成立的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知抛物线C:y2=2px(p>0)的焦点为F,直线y=2与y轴的交点为P,与C的交点为Q,且|QF|=2|PQ|
(Ⅰ)求C的方程
(Ⅱ)判断C上是否存在两点M,N,使得M,N关于直线l:x+y-4=0对称,若存在,求出|MN|,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足a1=2,an+1=$\frac{n{a}_{n}-1}{n+1}$(n∈N+).
(1)计算a2,a3,a4,并猜测出{an}的通项公式;
(2)用数学归纳法证明(1)中你的猜测.

查看答案和解析>>

同步练习册答案