【答案】
分析:把函数解析式提取2,利用特殊角的三角函数值及两角和与差的正弦函数公式化为一个角的正弦函数,由x的范围求出这个角的范围,根据正弦函数的图象与性质得到正弦函数的值域,进而得到函数的值域,得到函数的最大值及最小值,确定出M和N,即可求出M-N的值.
解答:解:

=2(

sinx+

cosx)
=2sin(x+

),
∵

≤x≤

,∴-

≤x+

≤

,
∴-

≤sin(x+

)≤1,
则-

≤f(x)≤2,即最大值M=2,最小值N=-

,
则M-N=2+

.
故答案为:2+
点评:此题考查了两角和与差的正弦函数公式,正弦函数的定义域与值域,其中利用三角函数的恒等变形把函数解析式化为一个角的正弦函数是解本题的关键.