精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F(1,0),设左顶点为A,上顶点为B,且
OF
FB
=
AB
BF
,如图.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若F(1,0),过F的直线l交椭圆于M,N两点,试确定
FM
FN
的取值范围.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(Ⅰ)由已知条件得A(-a,0),B(0,b),F(1,0),由
OF
FB
=
AB
BF
,推导出b2-a-1=0,由此能求出椭圆方程.
(Ⅱ)若直线l斜率不存在,则l:x=1,
FM
FN
=-
9
4
;若直线l斜率存在,设l:y=k(x-1),M(x1,y1),N(x2,y2),利用韦达定理能求出
FM
FN
的取值范围.
解答: 解:(Ⅰ)∵椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F(1,0),
设左顶点为A,上顶点为B,
∴A(-a,0),B(0,b),F(1,0),
OF
FB
=
AB
BF

∴b2-a-1=0,∵b2=a2-1,∴a2-a-2=0,解得a=2,
∴a2=4,b2=3,
∴椭圆C:
x2
4
+
y2
3
=1
.…(4分)
(Ⅱ)①若直线l斜率不存在,则l:x=1,
此时M(1,
3
2
)
N(1,-
3
2
)
FM
FN
=-
9
4

②若直线l斜率存在,设l:y=k(x-1),M(x1,y1),N(x2,y2),
则由
y=k(x-1)
x2
4
+
y2
3
=1
消去y得:(4k2+3)x2-8k2x+4k2-12=0,
x1+x2=
8k2
4k2+3
x1x2=
4k2-12
4k2+3

FM
FN
=(x1-1,y1)•(x2-1,y2
=(1+k2)[x1x2-(x1+x2)+1]
=
-9
4-
1
1+k2

∵k2≥0,∴0<
1
1+k2
≤1

3≤4-
1
1+k2
<4

-3≤
FM
FN
<-
9
4

综上,
FM
FN
的取值范围为[-3 -
9
4
]
. …(13分)
点评:本题考查椭圆的方程的求法,考查线段乘积取值范围的求法,解题时要认真审题,注意分类讨论思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
①如果两个平面有三点重合,那么这两个平面一定重合为一个平面;
②平行四边形的平行投影可能是正方形;
③过直线上一点可以作无数条直线与这条直线垂直,并且这些直线都在同一个平面内;
④如果一条直线与一个平面不垂直,那么这条直线与这个平面内的任意一条直线都不垂直;
⑤有两个侧面是矩形的棱柱是直棱柱.
其中正确的是
 
.(写出所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
ln|x|
x
,则函数y=f(x)的大致图象为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

实数x,y满足 
x+2y≥3
x+3y≤4
x+6y≥5
   则z=x-3y的最小值为(  )
A、-2
B、-1
C、
1
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足
x-y+1≥0
x+y≥0
x≤0
,则z=3x+2y的最大值是(  )
A、0
B、1
C、
3
D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上取两个点,将其坐标记录如下:A1(3,-2
3
)、A2(-2,0)、A3(4,-4)、A4
2
2
2
).
(Ⅰ)经判断点A1,A3在抛物线C2上,试求出C1、C2的标准方程;
(Ⅱ)求抛物线C2的焦点F的坐标并求出椭圆C1的离心率;
(Ⅲ)过C2的焦点F直线l与椭圆C1交不同两点M,N,且满足
OM
ON
,试求出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若椭圆 
x2
5
+
y2
m
=1
(0<m<5)和双曲线
x2
3
-
y2
n
=1
(n>0)有相同的焦点,F1、F2,P是两条曲线的一个交点,且PF1⊥PF2,求△PF1F2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距为2,且过点P(1,
3
2
).
(1)求椭圆C的方程;
(2)设椭圆C的左、右焦点分别为F1、F2,过点F2的直线l与椭圆C交于M、N两点,当直线l的倾斜角为45°时,求|MN|的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2
2
-2ax+3lnx.(0<a<3)
(1)当a=2时,求函数f(x)=
x2
2
-2ax+3lnx的单调区间.
(2)当x∈[1,+∞)时,若f(x)≥-5xlnx+3lnx-
3
2
恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案