精英家教网 > 高中数学 > 题目详情
14.函数y=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f(11)的值等于(  )
A.2B.2+$\sqrt{2}$C.2+2$\sqrt{2}$D.-2-2$\sqrt{2}$

分析 根据图象,求出函数的解析式,结合函数周期性的性质进行转化求解即可.

解答 解:由图象知A=2,
T=4×2=8,
即$\frac{2π}{ω}$=8,则ω=$\frac{π}{4}$,
即f(x)=2sin($\frac{π}{4}$x+φ),
由五点对应法得$\frac{π}{4}$×2+φ=$\frac{π}{2}$,即φ=0,
则f(x)=2sin($\frac{π}{4}$x),
则f(1)+f(2)+f(3)+…+f(8)=0,
则f(1)+f(2)+f(3)+…+f(11)=f(1)+f(2)+f(3),
∵f(1)=2sin$\frac{π}{4}$=2×$\frac{\sqrt{2}}{2}$=$\sqrt{2}$,
f(2)=2sin($\frac{π}{4}$×2)=2sin$\frac{π}{2}$=2,
f(3)=2sin($\frac{π}{4}$×3)=2×$\frac{\sqrt{2}}{2}$=$\sqrt{2}$,
∴f(1)+f(2)+f(3)=2+2$\sqrt{2}$,
即f(1)+f(2)+f(3)+…+f(11)=2+2$\sqrt{2}$,
故选:C.

点评 本题主要考查三角函数值的计算,根据条件求出三角函数的解析式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.重庆八中大学城校区与本部校区之间的驾车单程所需时间为T,T只与道路畅通状况有关,对其容量为500的样本进行统计,结果如下:
T(分钟)25303540
频数(次)10015020050
以这500次驾车单程所需时间的频率代替某人1次驾车单程所需时间的概率.
(1)求T的分布列与P(T<E(T));
(2)某天有3位教师独自驾车从大学城校区返回本部校区,记X表示这3位教师中驾车所用时间少于E(T)的人数,求X的分布列与E(X);
(3)下周某天张老师将驾车从大学城校区出发,前往本部校区做一个50分钟的讲座,结束后立即返回大学城校区,求张老师从离开大学城校区到返回大学城校区共用时间不超过120分钟的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知$a={2^{\frac{1}{2}}},b={(\frac{1}{2})^2},c={log_2}\frac{1}{2}$,则三个数的大小关系正确的是(  )
A.b<a<cB.c<a<bC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知集合A={(x,y)||x|≤2,|y|≤2,x,y∈Z},集合B={(x,y)|(x-2)2+(y-2)2≤4,x,y∈Z},在集合A中任取一个元素p,则p∈B的概率是$\frac{6}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.正常情况下,年龄在18岁到38岁的人,体重y(kg)对身高x(cm)的回归方程为$\stackrel{∧}{y}$═0.72x-58.2,张红同学(20岁)身高为178cm,她的体重应该在69.96kg左右.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(3x)=2xlog2x,那么f(3)的值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列函数是奇函数的是(  )
A.f(x)=x2+2|x|B.f(x)=x•sinxC.f(x)=2x+2-xD.$f(x)=\frac{cosx}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)={x^2}+4[sin(θ+\frac{π}{3})]•x-2$,θ∈[0,2π)
(1)若函数f(x)是偶函数:①求tanθ的值;②求$\sqrt{3}sinθ•cosθ+{cos^2}θ$的值.
(2)若f(x)在$[-\sqrt{3},1]$上是单调函数,求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)的导数为f′(x),且(x+1)f(x)+xf′(x)≥0对x∈[0,+∞)恒成立,则下列不等式一定成立的是(  )
A.f(1)<2ef(2)B.ef(1)<f(2)C.f(1)<0D.ef(e)<2f(2)

查看答案和解析>>

同步练习册答案