精英家教网 > 高中数学 > 题目详情
已知点A(3,
3
),O为坐标原点,点P{x,y}满足
3
x-y≤0
x-
3
y+2≥0
y≥0
,则Z=
OA
OP
|
OA
|
的最大值是
 
分析:本题考查的知识点简单线性规划问题,我们先在坐标系中画出满足约束条件
3
x-y≤0
x-
3
y+2≥0
y≥0
对应的平面区域,再根据Z=
OA
OP
|
OA
|
的几何意义,分析可行域中各点对应Z的值,易得到Z的最大值.
解答:解:满足约束条件
3
x-y≤0
x-
3
y+2≥0
y≥0
对应的平面区域如下图示:
精英家教网
又由Z=
OA
OP
|
OA
|
=|
OP
|•cosθ

则Z表示向量
OP
在向量
OA
上投影的大小
由图可知当P的坐标为(1,
3
)时,Z有最大值
3

故答案为:
3
点评:平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点A(3,
3
),O为坐标原点,点P(x,y)的坐标x,y满足
3
x-y≤0
x-
3
y+2≥0
y≥0
则向量
OP
在向量
OA
方向上的投影的取值范围是(  )
A、[-
3
3
]
B、[-3,3]
C、[-
3
,3]
D、[-3,
3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(3,3)、B(5,2)到直线l的距离相等,且直线l经过两直线l1:3x-y-1=0和l2:x+y-3=0的交点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(3,3),O 为坐标原点,点P(x,y)坐标x,y满足
y>0
x-y+2>0
2x-y<0
向量
OP
在向量
OA
方向上的投影的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知点A(3,3),B(5,1),P(2,1),点M是直线OP上的一个动点.
(Ⅰ)求|
PB
-
PA
|
的值;
(Ⅱ)若四边形APBM是平行四边形,求点M的坐标;
(Ⅲ)求
MA
MB
的最小值.

查看答案和解析>>

同步练习册答案