精英家教网 > 高中数学 > 题目详情
在锐角△ABC中,a、b、c分别为∠A、∠B、∠C所对的边,且
3
a=2csinA.
(1)确定∠C的大小;
(2)若c=
3
,求△ABC周长的取值范围.
(1)由
3
a=2csinA变形得:
a
c
=
2sinA
3

又正弦定理得:
a
c
=
sinA
sinC

2sinA
3
=
sinA
sinC

∵sinA≠0,∴sinC=
3
2

∵△ABC是锐角三角形,
∴∠C=
π
3

(2)∵c=
3
,sinC=
3
2

∴由正弦定理得:
a
sinA
=
b
sinB
=
c
sinC
=
3
3
2
=2,
即a=2sinA,b=2sinB,又A+B=π-C=
3
,即B=
3
-A,
∴a+b+c=2(sinA+sinB)+
3

=2[sinA+sin(
3
-A)]+
3

=2(sinA+sin
3
cosA-cos
3
sinA)+
3

=3sinA+
3
cosA+
3

=2
3
(sinAcos
π
6
+cosAsin
π
6
)+
3

=2
3
sin(A+
π
6
)+
3

∵△ABC是锐角三角形,
π
6
<∠A<
π
2

3
2
<sin(A+
π
6
)≤1,
则△ABC周长的取值范围是(3+
3
,3
3
].
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(sinx,-1)
n
=(cosx,3)

(1)设函数f(x)=(
m
+
n
)•
m
,求函数f(x)的单调递增区间;
(2)已知在锐角△ABC中,a,b,c分别为角A,B,C的对边,
3
c=2asin(A+B)
,对于(1)中的函数f(x),求f(B+
π
8
)
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,A、B、C三内角所对的边分别为a、b、c,cos2A+
1
2
=sin2A,a=
7

(1)若b=3,求c;
(2)求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区二模)在锐角△ABC中,a、b、c分别是三内角A、B、C所对的边,若a=3,b=4,且△ABC的面积为3
3
,则角C=
π
3
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•武汉模拟)在锐角△ABC中,A>B,则有下列不等式:①sinA>sinB;②cosA<cosB;③sin2A>sin2B;④cos2A<cos2B(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•武汉模拟)在锐角△ABC中,a、b、c分别为角A、B、C所对的边,又c=
21
,b=4,且BC边上高h=2
3

①求角C;
②a边之长.

查看答案和解析>>

同步练习册答案