精英家教网 > 高中数学 > 题目详情

【题目】某高中组织数学知识竞赛,采取答题闯关的形式,分两种题型,每种题型设两关.“数学文化”题答对一道得5分,“数学应用”题答对一道得10分,答对一道题即可进入下一关,否则终止比赛.有甲、乙、丙三人前来参赛,设三人答对每道题的概率分别是 ,三人答题互不影响.甲、乙选择“数学文化”题,丙选择“数学应用”题.
(Ⅰ)求乙、丙两人所得分数相等的概率;
(Ⅱ)设甲、丙两人所得分数之和为随机变量X,求X的分布列与期望.

【答案】解:(Ⅰ)乙、丙所得分数相等时,应为0分或10分,

其概率为P=(1﹣ )×(1﹣ )+ × × ×(1﹣ )=

(Ⅱ)设甲、丙两人所得分数之和为随机变量X,则X的可能取值为0,5,10,15,20,25,30,

其概率为P(X=0)=(1﹣ )×(1﹣ )=

P(X=5)= ×(1﹣ )×(1﹣ )=

P(X=10)= × ×(1﹣ )+(1﹣ )× ×(1﹣ )=

P(X=15)= × ×(1﹣ )×(1﹣ )=

P(X=20)= × × ×(1﹣ )+(1﹣ )× × =

P(X=25)= ×(1﹣ )× =

P(X=30)= × × =

∴X的分布列为:

X

0

5

10

15

20

25

30

P

数学期望为EX=0× +5× +10× +15× +20× +25× +30× =


【解析】(Ⅰ)乙、丙所得分数相等时,应为0分或10分,计算对应的概率值即可;(Ⅱ)根据题意,X的可能取值为0,5,10,15,20,25,30,求出对应的概率值,写出X的分布列,再计算数学期望值.
【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】等差数列{an}的前n项和为Sn , 且a3=9,S6=60.
(I)求数列{an}的通项公式;
(II)若数列{bn}满足bn+1﹣bn=an(n∈N+)且b1=3,求数列 的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是直线,是平面,给出下列命题:①若,则;②若,则;③若内不共线的三点到的距离都相等,则;④若,且,则;⑤若为异面直线,,则。则其中正确的命题是_______.(把你认为正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.
(Ⅰ)证明平面ABEF⊥平面EFDC;
(Ⅱ)求二面角E﹣BC﹣A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,输出z的值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥P﹣ABCD的底面是一个正方形,PA⊥平面ABCD,PA=AB=2,E是棱PA的中点,则异面直线BE与AC所成角的余弦值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>D)的离心率为 ,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为
(1)求a、b的值;
(2)C上是否存在点P,使得当l绕P转到某一位置时,有 = + 成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣1|﹣2|x+1|的最大值为k.
(1)求k的值;
(2)若a,b,c∈R, ,求b(a+c)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为h(0<h<2)的平面截该几何体,则截面面积为(
A.4π
B.πh2
C.π(2﹣h)2
D.π(4﹣h2

查看答案和解析>>

同步练习册答案