| A. | 2 | B. | -4 | C. | 0 | D. | 4 |
分析 令g(x)=ln$\frac{1+x}{1-x}$,则g(x)为奇函数,可得g(x)max+g(x)min=0,从而可求M+m的值.
解答 解:令g(x)=ln$\frac{1+x}{1-x}$,x∈[-$\frac{1}{2}$,$\frac{1}{2}$],
则g(-x)=ln$\frac{1-x}{1+x}$=-ln$\frac{1+x}{1-x}$=-g(x),
即g(x)为奇函数,
∴g(x)max+g(x)min=0,
∵2+ln$\frac{1+x}{1-x}$,x∈[-$\frac{1}{2}$,$\frac{1}{2}}$]的最大值与最小值分别为M,m,
∴M+m=4.
故选:D
点评 本题考查函数的最值,考查函数的奇偶性,考查学生分析解决问题的能力,求出g(x)max+g(x)min=0是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,40] | B. | [160,+∞) | C. | (-∞,40)∪(160,+∞) | D. | (-∞,40]∪[160,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com