精英家教网 > 高中数学 > 题目详情
已知z为复数,z+2i和
z2-i
均为实数,其中i是虚数单位.
(Ⅰ)求复数z;
(Ⅱ)若复数(z+ai)2在复平面上对应的点在第一象限,求实数a的取值范围.
分析:(I)设出复数的代数形式,整理出z+2i和
z
2-i
,根据两个都是实数虚部都等于0,得到复数的代数形式.
(II)根据上一问做出的复数的结果,代入复数(z+ai)2,利用复数的加减和乘方运算,写出代数的标准形式,根据复数对应的点在第一象限,写出关于实部大于0和虚部大于0,解不等式组,得到结果.
解答:解:(Ⅰ)设复数z=a+bi(a,b∈R),
由题意,z+2i=a+bi+2i=a+(b+2)i∈R,
∴b+2=0,即b=-2.
z
2-i
=
(a+bi)(2+i)
5
=
2a-b
5
+
2b+a
5
i∈R

∴2b+a=0,即a=-2b=4.∴z=4-2i.
(Ⅱ)由(Ⅰ)可知z=4-2i,
∵(z+ai)2=(4-2i+ai)2=[4+(a-2)i]2=16-(a-2)2+8(a-2)i
对应的点在复平面的第一象限,
16-(a-2)2>0
8(a-2)>0

解得a的取值范围为2<a<6.
点评:本题考查复数的加减乘除运算,考查复数的代数形式和几何意义,考查复数与复平面上点的对应,考查解决实际问题的能力,是一个综合题.
练习册系列答案
相关习题

科目:高中数学 来源:2010-2011年江苏省盐城市高二下学期期中考试理科数学 题型:解答题

(本题满分14分)

已知z为复数,z+2均为实数,其中是虚数单位.

(1)求复数z;

(2)若复数在复平面上对应的点在第一象限,求实数a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河北省保定市高二(下)期中数学试卷(理科)(解析版) 题型:解答题

已知z为复数,z+2i和均为实数,其中i是虚数单位.
(Ⅰ)求复数z;
(Ⅱ)若复数(z+ai)2在复平面上对应的点在第一象限,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:《第3章 数系的扩充与复数的引入》2010年单元测试卷(解析版) 题型:解答题

已知z为复数,z+2i和均为实数,其中i是虚数单位.
(Ⅰ)求复数z;
(Ⅱ)若复数(z+ai)2在复平面上对应的点在第一象限,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学单元检测:复数(2)(解析版) 题型:解答题

已知z为复数,z+2i和均为实数,其中i是虚数单位.
(Ⅰ)求复数z;
(Ⅱ)若复数(z+ai)2在复平面上对应的点在第一象限,求实数a的取值范围.

查看答案和解析>>

同步练习册答案