精英家教网 > 高中数学 > 题目详情
4.圆O:x2+y2=4与抛物线y=$\frac{{\sqrt{2}}}{2}{x^2}$相交于A,B两点.由圆的劣弧$\widehat{AB}$和抛物线弧$\widehat{AOB}$所包络而成的区域记为Ω,在圆O中任取一点P,则P点取自区域Ω中的概率为(  )
A.$\frac{1}{2π}+\frac{1}{3}$B.$\frac{1}{4π}+\frac{1}{6}$C.$\frac{π}{12}+\frac{1}{4}$D.$\frac{1}{4}+\frac{1}{6π}$

分析 联立抛物线和圆的方程求出交点坐标,根据积分的几何意义以及积分的运算法则求出阴影部分的面积,结合几何概型的概率公式进行求解即可.

解答 解:将y=$\frac{{\sqrt{2}}}{2}{x^2}$代入x2+y2=4得$\frac{1}{2}$x4+x2=4,即x4+2x2-8=0,得(x2-2)(x2+4)=0,
得x2-2=0,得x=$\sqrt{2}$或x=-$\sqrt{2}$,此时y=$\frac{\sqrt{2}}{2}×2$=$\sqrt{2}$,即A(-$\sqrt{2}$,$\sqrt{2}$),B($\sqrt{2}$,$\sqrt{2}$),
当y≥0时,由x2+y2=4得y=$\sqrt{4-{x}^{2}}$,
则阴影部分的面积S=∫${\;}_{-\sqrt{2}}^{\sqrt{2}}$($\sqrt{4-{x}^{2}}$-$\frac{{\sqrt{2}}}{2}{x^2}$)dx=∫${\;}_{-\sqrt{2}}^{\sqrt{2}}$$\sqrt{4-{x}^{2}}$dx-∫${\;}_{-\sqrt{2}}^{\sqrt{2}}$$\frac{{\sqrt{2}}}{2}{x^2}$dx,
∫${\;}_{-\sqrt{2}}^{\sqrt{2}}$$\sqrt{4-{x}^{2}}$dx几何意义是x2+y2=4在-$\sqrt{2}$≤x≤$\sqrt{2}$,y≥0时的面积,
则∠AOB=$\frac{π}{2}$,S△AOC=S△BOD=$\frac{1}{2}×\sqrt{2}×\sqrt{2}$=1,
扇形的面积S=$\frac{1}{4}$π×22=π,则∫${\;}_{-\sqrt{2}}^{\sqrt{2}}$$\sqrt{4-{x}^{2}}$dx=1+1+π=2+π,
∫${\;}_{-\sqrt{2}}^{\sqrt{2}}$$\frac{{\sqrt{2}}}{2}{x^2}$dx=$\frac{\sqrt{2}}{2}$×$\frac{1}{3}$x3|${\;}_{-\sqrt{2}}^{\sqrt{2}}$=$\frac{\sqrt{2}}{6}$(($\sqrt{2}$)3-(-$\sqrt{2}$)3)=$\frac{\sqrt{2}}{6}$×4$\sqrt{2}$=$\frac{4}{3}$,
则Ω的面积S=2+π-$\frac{4}{3}$=π+$\frac{2}{3}$,
则在圆O中任取一点P,则P点取自区域Ω中的概率P=$\frac{π+\frac{2}{3}}{π×{2}^{2}}=\frac{π+\frac{2}{3}}{4π}$=$\frac{1}{4}+\frac{1}{6π}$,
故选:D

点评 本题主要考查几何概型的概率的计算,根据积分的几何意义和应用求出阴影部分的面积是解决本题的关键.综合性较强,运算量较大,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知i是虚数单位,若复数z满足(1+i)z=2+i,则$\overline{z}$=(  )
A.$\frac{3}{2}$-$\frac{1}{2}$iB.$\frac{3}{2}$+$\frac{1}{2}$iC.1+$\frac{1}{2}$iD.1-$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.$\sqrt{1+sin6°}$-$\sqrt{2+2cos6°}$化简的结果为(  )
A.-sin3°+cos3°B.-sin3°+3cos3°C.sin3°-cos3°D.-sin3°-3cos3°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某赛季甲队每场比赛平均失球数是1.5,失球个数的标准差为1.1;乙队每场比赛平均失球数是2.1,失球个数的标准差为0.4.下列说法中,错误的是(  )
A.平均说来甲队比乙队防守技术好
B.甲队比乙队技术水平更稳定
C.甲队有时表现比较差,有时表现又比较好
D.乙队很少不失球

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求下列函数导数:
(1)f(x)=lnx-x;
(2)f(x)=xex
(3)f(x)=$\frac{2x}{{e}^{x}}$;
(4)f(x)=$\frac{x}{lnx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.下面有两个游戏规则,袋子中分别装有球,从袋中无放回地取球,分别计算甲获胜的概率,并说明哪个游戏是公平的?
游戏1游戏2
2个红球和2个白球3个红球和1个白球
取1个球,再取1个球取1个球,再取1个球
取出的两个球同色→甲胜取出的两个球同色→甲胜
取出的两个球不同色→乙胜取出的两个球不同色→乙胜

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.用秦九韶算法计算函数f(x)=2x6-3x4+2x3+7x2+6x+3,求x=2时函数值,则V2=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,三棱柱ABC-A1B1C1中,CC1=BC1=$\sqrt{2}$,BC=2,△ABC是以BC为底边的等腰三角形,平面ABC⊥平面BCC1B1,E、F分别为棱AB、CC1的中点.
(1)求证:EF∥平面A1BC1
(2)若AC2为整数,且EF与平面ACC1A1所成的角的正弦值为$\frac{\sqrt{2}}{3}$,求二面角C-AA1-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2sinxcosx+$\sqrt{3}$cos2x(x∈R).
(1)求f(x)的最值;
(2)求f(x)的单调递增区间.

查看答案和解析>>

同步练习册答案