精英家教网 > 高中数学 > 题目详情

在△ABC中角A、B、C的对边分别为a、b、c设向量数学公式=(a,cosB),数学公式=(b,cosA)且数学公式数学公式
(Ⅰ)若sinA+sinB=数学公式,求A;
(Ⅱ)若△ABC的外接圆半径为1,且abx=a+b试确定x的取值范围.

解:(Ⅰ)因为向量=(a,cosB),=(b,cosA)且,所以,acosA=sinB.--------(1分)
由正弦定理,可得sinAcosA=sinBcosB,即 sin2A=sin2B.--------------(2分)
所以 2A+2B=π,即 A+B=.-------(3分)
再由sinA+sinB=,以及sinA+sinB=sinA+cosA=sin(A+),可得 .------(4分)
由于 A为锐角,故有A+= 或A+=,∴,或.------(6分)
(Ⅱ)若△ABC的外接圆半径为1,且abx=a+b,则 x=,由正弦定理,得.-----(8分)
设 sinA+cosA=t,t∈(1,),则 t2=1+2sinAcosA,∴sinAcosA=,-----------(10分)
,所以实数x的取值范围为.---------(12分)
分析:(Ⅰ)由两个向量共线的性质求得sin2A=sin2B,故A+B=.再由sinA+sinB=,求得,可得A+= 或A+=,由此求得A的值.
(Ⅱ)由条件结合正弦定理可得 ,设 sinA+cosA=t,t∈(1,),根据 ,求得实数x的取值范围.
点评:本题主要考查两个向量共线的性质,正弦定理两角和差的正弦公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中角A,B,C的对边分别为a,b,c,已知 
sinA•cosB
cosA•sinB
=
2c-b
b
,则cosA=
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2sinx(cosx-sinx),其中x∈R
(1)求函数f(x)的最小正周期,并从下列的变换中选择一组合适变换的序号,经过这组变换的排序,可以把函数y=sin2x的图象变成y=f(x)的图象;(要求变换的先后顺序)
①纵坐标不变,横坐标变为原来的
1
2
倍,
②纵坐标不变,横坐标变为原来的2倍,
③横坐标不变,纵坐标变为原来的
2
倍,
④横坐标不变,纵坐标变为原来的
2
2
倍,
⑤向上平移一个单位,⑥向下平移一个单位,
⑦向左平移
π
4
个单位,⑧向右平移
π
4
个单位,
⑨向左平移
π
8
个单位,⑩向右平移
π
8
个单位,
(2)在△ABC中角A,B,C对应边分别为a,b,c,f(A)=0,b=4,S△ABC=6,求a的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中角A、B、C所对的边分别为a、b、c,若
sinA
a
=
cosB
b
,则B的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中角A、B、C所对的边是a、b、c,且a=2bsinA,则角B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳二模)已知向量
m
=(cosωx,sinωx),
n
=(cosωx,2
3
cosωx-sinωx)(x∈R,ω>0)函数f(x)=|
m
|+
m
n
且最小正周期为π,
(1)求函数,f(x)的最大值,并写出相应的x的取值集合;
(2)在△ABC中角A,B,C所对的边分别为a,b,c且f(B)=2,c=3,S△ABC=6
3
,求b的值.

查看答案和解析>>

同步练习册答案