精英家教网 > 高中数学 > 题目详情
已知正四棱锥P-ABCD中,PA=2
3
,那么当该棱锥的体积最大时,它的高h=______.
设正四棱锥P-ABCD的底面变长为a,高位h,
因为在正四棱锥P-ABCD中,PA=2
3

所以有
a2
2
+h2=12
,即a2=24-2h2
所以正四棱锥P-ABCD的体积为:y=Vp-ABCD=
1
3
a2h=8h-
2
3
h3
(h>0)
所以y′=8-2h2,令y′>0得0<h<2,令y′<0得h>2,
所以当h=2时正四棱锥P-ABCD的体积有最大值.
故答案为2.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正四棱锥P-ABCD,PA=2,AB=
2
,M是侧棱PC的中点,则异面直线PA与BM所成角为
 
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知正四棱锥P-ABCD的全面积为2,记正四棱锥的高为h.
(1)用h表示底面边长,并求正四棱锥体积V的最大值;
(2)当V取最大值时,求异面直线AB和PD所成角的大小.
(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知正四棱锥P—ABCD中,PA=2,AB=,M是侧棱PC的中点,则异面直线PA与BM所成角的大小为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正四棱锥P-ABCD的全面积为2,记正四棱锥的高为h.
(1)用h表示底面边长,并求正四棱锥体积V的最大值;
(2)当V取最大值时,求异面直线AB和PD所成角的大小.
(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源:2006-2007学年北京市海淀区高三(上)期末数学试卷(理科)(解析版) 题型:填空题

已知正四棱锥P-ABCD,PA=2,AB=,M是侧棱PC的中点,则异面直线PA与BM所成角为   

查看答案和解析>>

同步练习册答案