精英家教网 > 高中数学 > 题目详情

(本小题满分13分)对于在区间[mn]上有意义的两个函数,如果对任意[mn]均有,称在[mn]上是接近的,否则称在[mn]上是非接近的,现有两个函数a>0,a≠1),给定区间[a+2,a+3].(1)若在给定区间[a+2,a+3]上都有意义,求a的取值范围;(2)讨论在[a+2,a+3]上是否是接近的.

(Ⅰ) 0<a<1   (Ⅱ)  接近 非接近


解析:

(1)要使有意义,须满足,∴ x>3a……3分

要使在给定区间[a+2,a+3]上有意义,

∴ 0<a<1…5分

(2)在[a+2,a+3]是接近的

  

    …8分

  对于任意恒成立令,且对称轴在区间的左边于是(*)

  

注意到,解得,……………………………………………11分

故当时,上是接近的;………12分

时,上是非接近的.…………13分

练习册系列答案
相关习题

科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题

(本小题满分13分)已知函数.

(1)求函数的最小正周期和最大值;

(2)在给出的直角坐标系中,画出函数在区间上的图象.

(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知定义域为的函数是奇函数.

(1)求的值;(2)判断函数的单调性;

(3)若对任意的,不等式恒成立,求k的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题

 

(本小题满分13分)如图,正三棱柱的所有棱长都为2,的中点。

(Ⅰ)求证:∥平面

(Ⅱ)求异面直线所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[来源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题

(本小题满分13分)

已知为锐角,且,函数,数列{}的首项.

(1) 求函数的表达式;

(2)在中,若A=2,,BC=2,求的面积

(3) 求数列的前项和

 

 

查看答案和解析>>

同步练习册答案