精英家教网 > 高中数学 > 题目详情
15.已知二次方程ax2+bx+c=0(a>0)的两个根为-2,3,则不等式ax2+bx+c>0的解为{x|x<-2或x>3}.

分析 根据二次方程与对应不等式的关系,直接写出不等式的解集.

解答 解:二次方程ax2+bx+c=0的根为-2,3,且a>0,
∴二次方程ax2+bx+c=0(a>0)的两个根为-2,3,
则不等式ax2+bx+c>0的解集{x|x<-2或x>3}.
故答案为:{x|x<-2或x>3}.

点评 本题考查了一元二次方程与对应不等式的解法与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.各项均为正数的等差数列{an}中,a5a10=25,则前14项和S14的最小值为(  )
A.40B.70C.75D.80

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.函数f(x)=2$\sqrt{3}$cos2ωx+2sinωcosωx-$\sqrt{3}$(ω>0),其图象上相邻两个最高点之间的距离为$\frac{2}{3}$π.
(Ⅰ)求ω的值;
(Ⅱ)将函数y=f(x)的图象向右平移$\frac{π}{6}$个单位,再将所得图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到y=g(x)的图象,求g(x)在[0,$\frac{4π}{3}$]上的单调增区间;
(Ⅲ)在(Ⅱ)的条件下,求方程g(x)=t(0<t<2)在[0,$\frac{8}{3}$π]内所有实根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ex+ax-1 (a∈R).
(I)求函数f(x)的单调区间;
(II)设函数g(x)=$\frac{{e}^{2}({x}^{2}-a)}{f(x)-ax+1}$,当g(x)有两个极值点x1,x2(x1<x2)时,总有λ[(2x1-x12)e${\;}^{2-{x}_{1}}$-a]-x2g(x1)≥0,求实数λ的值或取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设a=log43,b=log34,c=log${\;}_{\frac{1}{3}}$$\frac{3}{4}$,则(  )
A.a<b<cB.a<c<bC.c<a<bD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.一个几何体的三视图如图所示(单位:m),则该几何体的体积为(  )
A.6+π(m3B.4+π(m3C.3+π(m3D.2+π(m3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=x•tanx,若x1,x2∈(-$\frac{π}{2}$,$\frac{π}{2}$),且f(x1)>f(x2),则下列结论中一定成立的是(  )
A.x1>x2B.x1<x2C.x1+x2>0D.x12>x22

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若四面体的三视图如图所示,则该四面体的外接球表面积为9π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某公司的班车在8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案