精英家教网 > 高中数学 > 题目详情
20.过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F2的直线交椭圆于A,B两点,F1为其左焦点,已知△AF1B的周长为4$\sqrt{3}$,椭圆的离心率为$\frac{\sqrt{6}}{3}$.
(1)求椭圆C的方程;
(2)设P为椭圆C的下顶点,椭圆C与直线y=kx+m相交于不同的两点M,N,当|PM|=|PN|时,求实数m的取值范围.

分析 (1)利用△AF1B的周长为4$\sqrt{3}$,椭圆的离心率为$\frac{\sqrt{6}}{3}$,确定几何量,从而可得椭圆的方程;
(2)设A为弦MN的中点,直线与椭圆方程联立得(3k2+1)x2+6mkx+3(m2-1)=0,由于直线与椭圆有两个交点,可得m2<3k2+1,|PM|=||PN|,可得AP⊥MN,由此可推导出m的取值范围.

解答 解:(1)∵△AF1B的周长为4$\sqrt{3}$,椭圆的离心率为$\frac{\sqrt{6}}{3}$,
∴a=$\sqrt{3}$,c=$\sqrt{2}$
∴b=1,
∴椭圆的方程为:$\frac{{x}^{2}}{3}+{y}^{2}$=1;
(2)设A(xA,yA)、M(xM,yM)、N(xN,yN),A为弦MN的中点,
直线y=kx+m与椭圆方程联立,消去y可得(3k2+1)x2+6mkx+3(m2-1)=0,
∵直线与椭圆相交,∴△=(6mk)2-12(3k2+1)(m2-1)>0,∴m2<3k2+1,①
由韦达定理,可得A(-$\frac{3km}{1+3{k}^{2}}$,$\frac{m}{1+3{k}^{2}}$)
∵|PM|=||PN|,∴AP⊥MN,
∴$\frac{\frac{m}{1+3{k}^{2}}+1}{-\frac{3km}{1+3{k}^{2}}}•k=-1$
∴2m=3k2+1②
把②代入①得2m>m2解得0<m<2
∵2m=3k2+1>1,∴m>$\frac{1}{2}$
∴$\frac{1}{2}$<m<2.
当k=0时,m=$\frac{1}{2}$,也成立.
综上可得m的范围是[$\frac{1}{2}$,2).

点评 本题考查椭圆的方程,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.己知{an}是等差数列,a5=15,a10=-10,记数列{an}的第n项到第n+5顶的和为Tn;,则|Tn|取得最小值时的n的值为5或6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2x-$\frac{1}{{2}^{x}}$.
(Ⅰ)若2′f(2t)+mf(t)≥0对于任意实数t∈[1,2]恒成立,求实数m的取值范围;
(Ⅱ)若g(x)=22x+2-2x-2mf(x)在[1,+∞)上的最小值为-2,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$(a>b>0)的左、右焦点分别为F1,F2,以F1为圆心,短半轴长为半径的圆与y轴相切,且与直线x-$\sqrt{3}$y-2=0相切.
(1)求椭圆的标准方程;
(2)已知点P($\sqrt{6}$,0),直线l与椭圆交于A、B两点,且满足$\overrightarrow{PA}$•$\overrightarrow{PB}$=-2,试问直线l是否恒过定点,若恒过定点,请给出证明,并求出该定点的坐标;若不过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,长方体ABCD-A1B1C1D1中,O为BD1的中点,三棱锥O-ABD的体积为V1,四棱锥O-ADD1A1的体积为V2,则$\frac{{V}_{1}}{{V}_{2}}$的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线y2=4px(p>0)的焦点为F,圆W:(x+p)2+y2=p2的圆心到过点F的直线l的距离为p.
(1)求直线l的斜率;
(2)若直线1与抛物线交于A.B两点.△WAB的面积为8.求抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=$\frac{a}{x}$+lnx在点(1,a)处的切线斜率为2,则实数a的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若关于x的方程sinx+$\sqrt{3}$cosx+a=0在[0,2π]上有三个实根,则a的值为-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=log2$\frac{1-x}{1+x}$+2,若f(m)=4,则f(-m)=0.

查看答案和解析>>

同步练习册答案