精英家教网 > 高中数学 > 题目详情

【题目】某学校团委组织了文明出行,爱我中华的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(单位:分)整理后,得到如下频率分布直方图(其中分组区间为.

1)求成绩在的频率,并补全此频率分布直方图;

2)求这次考试平均分的估计值;

3)若从成绩在的学生中任选两人,求他们的成绩在同一分组区间的概率.

【答案】1,频率分布直方图见解析;(2;(3

【解析】

试题分析:(1)先根据题目条件求出成绩在除外的各组人数,进而可得出成绩在内的学生人数,并且可据此补全此频率分布直方图;(2)由题知考试平均分的估计值应为直方图中各个小矩形的面积与其对应矩形的底边中点的横坐标积的和;(3)可先求出成绩在的学生人数,再利用古典概型即可求得成绩在同一分组区间的概率.

试题解析:(1)由题意得成绩在的学生人数为,在的学生人数为,在的学生人数为,在的学生人数为

所以成绩在的学生人数为,频率分布直方图同(A)(1);

2),(3)同(A)(2),(3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+ ax2﹣2bx
(1)设点a=﹣3,b=1,求f(x)的最大值;
(2)当a=0,b=﹣ 时,方程2mf(x)=x2有唯一实数解,求正数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正四棱台ABCDA1B1C1D1中,上底面A1B1C1D1边长为1,下底面ABCD边长为2,侧棱与底面所成的角为60°,则异面直线AD1B1C所成角的余弦值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cosωx﹣sinωx,sinωx), =(﹣cosωx﹣sinωx,2 cosωx),设函数f(x)= +λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈( ,1)
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图象经过点( ,0)求函数f(x)在区间[0, ]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是函数的导函数的图象,给出下列命题:

①是函数的极值点;
②是函数的最小值点;
③在处切线的斜率小于零;
④在区间上单调递增。
则正确命题的序号是( )
A.①②
B.①④
C.②③
D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax2﹣a﹣lnx,g(x)= ,其中a∈R,e=2.718…为自然对数的底数.
(1)讨论f(x)的单调性;
(2)证明:当x>1时,g(x)>0;
(3)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的单调区间;
(2)已知f(x)在x=1处取得极大值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·四川)已知函数f(x)=-2(x+a)lnx+x2-2ax-2a2+a,其中a>0.
(1)设g(x)是f(x)的导函数,讨论g(x)的单调性;
(2)证明:存在a(0,1),使得f(x)≥0,在区间(1,+)内恒成立,且f(x)=0在(1,+)内有唯一解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则“k=1”是“△OAB的面积为 ”的(
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分又不必要条件

查看答案和解析>>

同步练习册答案