【题目】某学校团委组织了“文明出行,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(单位:分)整理后,得到如下频率分布直方图(其中分组区间为
,
,…,
).
![]()
(1)求成绩在
的频率,并补全此频率分布直方图;
(2)求这次考试平均分的估计值;
(3)若从成绩在
和
的学生中任选两人,求他们的成绩在同一分组区间的概率.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx+
ax2﹣2bx
(1)设点a=﹣3,b=1,求f(x)的最大值;
(2)当a=0,b=﹣
时,方程2mf(x)=x2有唯一实数解,求正数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正四棱台ABCD-A1B1C1D1中,上底面A1B1C1D1边长为1,下底面ABCD边长为2,侧棱与底面所成的角为60°,则异面直线AD1与B1C所成角的余弦值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
=(cosωx﹣sinωx,sinωx),
=(﹣cosωx﹣sinωx,2
cosωx),设函数f(x)=
+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(
,1)
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图象经过点(
,0)求函数f(x)在区间[0,
]上的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是函数的导函数的图象,给出下列命题:![]()
①是函数的极值点;
②是函数的最小值点;
③在处切线的斜率小于零;
④在区间上单调递增。
则正确命题的序号是( )
A.①②
B.①④
C.②③
D.③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ax2﹣a﹣lnx,g(x)=
,其中a∈R,e=2.718…为自然对数的底数.
(1)讨论f(x)的单调性;
(2)证明:当x>1时,g(x)>0;
(3)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的单调区间;
(2)已知f(x)在x=1处取得极大值,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2015·四川)已知函数f(x)=-2(x+a)lnx+x2-2ax-2a2+a,其中a>0.
(1)设g(x)是f(x)的导函数,讨论g(x)的单调性;
(2)证明:存在a
(0,1),使得f(x)≥0,在区间(1,+
)内恒成立,且f(x)=0在(1,+
)内有唯一解.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则“k=1”是“△OAB的面积为
”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分又不必要条件
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com