如图,棱柱ABCD—A1B1C1D1的所有棱长都等于2,∠ABC=60°,平面AA1C1C⊥平面ABCD,∠A1AC=60°。
(Ⅰ)证明:BD⊥AA1;
(Ⅱ)求二面角D—A1A—C的平面角的余弦值;
(Ⅲ)在直线CC1上是否存在点P,使BP//平面DA1C1?若存在,求出点P的位置;若不存在,说明理由。
![]()
(Ⅰ)见解析
(Ⅱ)![]()
(Ⅲ)见解析
连接BD交AC于O,则BD⊥AC,
连接A1O
在△AA1O中,AA1=2,AO=1,
∠A1AO=60°
∴A1O2=AA12+AO2-2AA1·Aocos60°=3
∴AO2+A1O2=A12
∴A1O⊥AO,由于平面AA1C1C⊥
平面ABCD,
所以A1O⊥底面ABCD
∴以OB、OC、OA1所在直线为x轴、y轴、z轴建立如图所示空间直角坐标系,则A(0,-1,0),B(
,0,0),C(0,1,0),D(-
,0,0),A1(0,0,
)
|
(Ⅰ)由于![]()
![]()
则![]()
∴BD⊥AA1……………………4分
(Ⅱ)由于OB⊥平面AA1C1C
∴平面AA1C1C的法向量![]()
设
⊥平面AA1D
则![]()
得到
……………………6分
![]()
所以二面角D—A1A—C的平面角的余弦值是
……………………8分
(Ⅲ)假设在直线CC1上存在点P,使BP//平面DA1C1
设![]()
则![]()
得
……………………9分
设![]()
则
设![]()
得到
……………………10分
又因为
平面DA1C1
则
·![]()
即点P在C1C的延长线上且使C1C=CP……………………12分
法二:在A1作A1O⊥AC于点O,由于平面AA1C??1C⊥平面
ABCD,由面面垂直的性质定理知,A1O⊥平面ABCD,
又底面为菱形,所以AC⊥BD
|
……………………4分
(Ⅱ)在△AA1O中,A1A=2,∠A1AO=60°
∴AO=AA1·cos60°=1
所以O是AC的中点,由于底面ABCD为菱形,所以
O也是BD中点
由(Ⅰ)可知DO⊥平面AA1C
过O作OE⊥AA1于E点,连接OE,则AA1⊥DE
则∠DEO为二面角D—AA1—C的平面角
……………………6分
在菱形ABCD中,AB=2,∠ABC=60°
∴AC=AB=BC=2
∴AO=1,DO=![]()
在Rt△AEO中,OE=OA·sin∠EAO=![]()
DE=![]()
∴cos∠DEO=![]()
∴二面角D—A1A—C的平面角的余弦值是
……………………8分
(Ⅲ)存在这样的点P
连接B1C,因为A1B1
AB
DC
∴四边形A1B1CD为平行四边形。
∴A1D//B1C
在C1C的延长线上取点P,使C1C=CP,连接BP……………………10分
因B??1??B
CC1,……………………12分
∴BB1
CP
∴四边形BB1CP为平行四边形
则BP//B1C
∴BP//A1D
∴BP//平面DA1C1
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com