在利用线性回归模型解决实际问题的时候,应怎样合理建模,形成规律,总结方法呢?
|
导思:在解决实际问题时,如何理解实际背景呢?线性回归模型与一次函数有什么不同呢?产生随机误差的原因是什么呢? 探究:在解决实际问题时,常需要推断,在推断时,不能仅凭主观意愿作出结论,而是需要理清实际背景,要通过实验来收集数据,并根据独立性检验的原理做出合理的推断. 散点图可以形象地展示两个变量的关系,把数据用散点图表示出来,可以直观地了解两个变量的关系,常用横坐标表示解释变量,用纵坐标表示预报变量. 在散点图上画回归直线,回归直线与原始数据拟合的情况,直观地反应了回归直线和散点间的关系.在实际问题中,线性回归模型适用的范围要比一次函数大得多.当残差变量恒等于0时,线性回归模型就变成一次函数模型.因此,一次函数模型是线性回归模型的特殊形式,线性回归模型是一次函数模型的一般形式. 随机误差产生的主要原因:一是所用的确定性函数不恰当引起的误差;二是忽略了某种因素的影响;三是存在观测误差,由于测量工具等原因,导致y的观测值产生误差.但误差越小,说明回归模型的拟合效果越好. |
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| 1 | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
在利用线性回归模型进行预报时,有以下四种说法:
①样本数据是来自那个总体,预报时也仅适用于这个总体;
②线性回归模型具有时效性;
③建立模型时自变量的取值范围决定了预报时模型的适用范围,通常不能超出太多;
④在回归模型中,因变量的值不能由自变量的值完全确定.
其中说法正确的有 .
(只填你认为正确说法的序号)
查看答案和解析>>
科目:高中数学 来源:2013-2014学年河北省高三下学期二调考试理科数学试卷(解析版) 题型:选择题
关于统计数据的分析,有以下几个结论,其中正确的个数为( )
①利用残差进行回归分析时,若残差点比较均匀地落在宽度较窄的水平带状区域内,则说明线性回归模型的拟合精度较高;
②将一组数据中的每个数据都减去同一个数后,期望与方差均没有变化;
③调查剧院中观众观后感时,从50排(每排人数相同)中任意抽取一排的人进行调查是分层抽样法;
④已知随机变量X服从正态分布N(3,1),且P(2≤X≤4)=0.682 6,则P(X>4)等于0.158 7
⑤某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人.为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为15人。
A.2 B.3 C.4 D.5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com