(本小题满分13分)设椭圆
的左、右焦点分别为F1、F2,上顶点为A,在x轴上有一点B,满足
且F1为BF2的中点.
(Ⅰ)求椭圆 C的离心率;
(Ⅱ)若过A、B、F2三点的圆恰好与直线
相切,判断椭圆C和直线
的位置关系.
![]()
(Ⅰ)椭圆的离心率
. (Ⅱ)直线和椭圆相交.
【解析】(I)求出左、右焦点分别为F1、F2,上顶点为A的坐标,通过
,且AB⊥AF2,推出a,b,c的关系,结合a2=b2+c2,即可求椭圆C的离心率;
(II)利用(I)求出过A、B、F2三点的圆的圆心与半径,利用圆与直线
相切圆心到直线的距离等于半径,求出a,b,即可求椭圆C的方程.
(Ⅰ)由题意知
,
,
.
因为
,所以在
中,
. ……2分
又因为
为
的中点,所以
, ……4分
又
,所以
.故椭圆的离心率
. ……6分
(Ⅱ)由(Ⅰ)知
,于是
,
,
的外接圆圆心为
,半径
. ……8分
所以
,解得
,所以
,
.
所以椭圆的标准方程为:
. ……11分
由
得:
,可得
,所以直线和椭圆相交. ……13分
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数![]()
.
(1)求函数
的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数
在区间
上的图象.
(3)设0<x<
,且方程
有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为
的函数
是奇函数.
(1)求
的值;(2)判断函数
的单调性;
(3)若对任意的
,不等式恒成立
,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱
的所有棱长都为2,
为
的中点。
(Ⅰ)求证:
∥平面
;
(Ⅱ)求异面直线
与
所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知
为锐角,且
,函数
,数列{
}的首项
.
(1) 求函数
的表达式;
(2)在
中,若
A=2
,
,BC=2,求
的面积
(3) 求数列
的前
项和![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com