精英家教网 > 高中数学 > 题目详情
若对于正整数k,g(k)表示k的最大奇数因数,例如g(3)=3,g(10)=5.设Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n).
(Ⅰ)求g(6),g(20)的值;
(Ⅱ)求3S1-2,3S2-2,3S3-2的值;并由此猜想{Sn}的通项公式(不必证明)
分析:(Ⅰ)由题意,g(6)=3,g(10)=5,
(Ⅱ)由题意,仿照数列通项公式求法解决.
解答:解:Ⅰ)由题意,g(6)=3,g(10)=5,
(Ⅱ)3S1-2=3g(1)-2=1,
3S2-2=3[g(1)+g(2)+g(3)+g(4)]-2=3×6-2=16
3S3-2=3[g(1)+g(2)+g(3)+g(4)+…+g(8)]-2=3×21-2=60
所以对n∈N*,猜想Sn=
1
3
(4n+2)
点评:题考查新定义,考查数列的求和,解题的关键是正确理解新定义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若对于正整数k、g(k)表示k的最大奇数因数,例如g(3)=3,g(20)=5,并且g(2m)=g(m)(m∈N*),设Sn=g(1)+g(2)+g(3)+…g(2n)
(Ⅰ)求S1、S2、S3
(Ⅱ)求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

若对于正整数k,g(k)表示k的最大奇数因数,例如g(3)=3,g(10)=5;设Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n),则数列{Sn}的通项公式是
Sn=
1
3
(4n+2)
Sn=
1
3
(4n+2)

查看答案和解析>>

科目:高中数学 来源: 题型:

若对于正整数k、g(k)表示k的最大奇数因数,例如g(3)=3,g(20)=5,并且g(2m)=g(m)(m∈N*),设Sn=g(1)+g(2)+g(3)+…g(2n)
(Ⅰ)求S1、S2、S3
(Ⅱ)求Sn
(III)设bn=
1
Sn-1
,求证数列{bn}的前n顶和Tn
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区一模)若对于正整数k,g(k)表示k的最大奇数因数,例如g(3)=3,g(10)=5.设Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n)
(Ⅰ)求g(6),g(20)的值;
(Ⅱ)求S1,S2,S3的值;
(Ⅲ)求数列{Sn}的通项公式.

查看答案和解析>>

同步练习册答案