精英家教网 > 高中数学 > 题目详情
已知
a
=(sinx,1)
b
=(cosx,-
1
2
)
,函数f(x)=
a
•(
a
-
b
)
,那么下列四个命题中正确命题的序号是______.
①f(x)是周期函数,其最小正周期为2π.
②当x=
π
8
时,f(x)有最小值2-
2
2

③[-
7
8
π,-
3
8
π]是函数f(x)的一个单调递增区间;
④点(-
π
8
,2)是函数f(x)的一个对称中心.
由题意,f(x)=
a
2
-
a
b
=sin2x+1-(sinxcosx-
1
2
)=2-
1
2
cos2x-
1
2
sin2x
=2-
2
2
sin(2x+
π
4
)
,∴①f(x)是周期函数,其最小正周期为π,故①错;
②当x=
π
8
时,2x+
π
4
=
π
2
,∴sin(2x+
π
4
)=1
,∴f(x)有最小值2-
2
2
,故②正确;
③x∈[-
7
8
π,-
3
8
π]时,2x+
π
4
∈[-
2
,-
π
2
]
,∴[-
7
8
π,-
3
8
π]是函数f(x)的一个单调递增区间,故③正确;
④∵(-
π
8
,0)是函数g(x)=sin(2x+
π
4
)
的一个对称中心,∴点(-
π
8
,2)是函数f(x)的一个对称中心,故④正确
故答案为:②③④
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(sinx,1)
b
=(2cosx,2+cos2x)
,函数f(x)=
a
b

(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求函数f(x)的最大值及取得最大值的自变量x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinx,cosx)
b
=(
3
cosx,cosx)
,设函数f(x)=
a
b
(x∈R)
(1)求f(x)的最小正周期及单调递增区间;
(2)当x∈[-
π
6
12
]
时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinx,-cosx),
b
=(cosx,
3
cosx)
,函数f(x)=
a
b
+
3
2

(1)求f(x)的最小正周期,并求其图象对称中心的坐标;
(2)当0≤x≤
π
2
时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•芜湖二模)已知
a
=(sinx,1)
b
=(cosx,-
1
2
)
,函数f(x)=
a
•(
a
-
b
)
,那么下列四个命题中正确命题的序号是
②③④
②③④

①f(x)是周期函数,其最小正周期为2π.
②当x=
π
8
时,f(x)有最小值2-
2
2

③[-
7
8
π,-
3
8
π]是函数f(x)的一个单调递增区间;
④点(-
π
8
,2)是函数f(x)的一个对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinx,cosx),
b
=(
3
cosx,cosx)
,设函数f(x)=
a
b
(x∈R)
(1)求f(x)的最小正周期及单调递增区间;
(2)当x∈[-
π
6
12
]
时,求f(x)的最值并指出此时相应的x的值.

查看答案和解析>>

同步练习册答案