精英家教网 > 高中数学 > 题目详情
在正方体­中,点P是面内一动点,若点P到直线BC与直线的距离相等,则动点P的轨迹所在的曲线是         (       )
A.直线B.圆C.双曲线D.抛物线
D
由题意知,直线C1D1⊥平面BB1C1C,则C1D1⊥PC1,即|PC1|就是点P到直线C1D1的距离,
那么点P到直线BC的距离等于它到点C的距离,所以点P的轨迹是抛物线.
故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图所示,已知PD⊥平面ABCD,底面ABCD是正方形,PD=AB,M是PA的中点,则二面角M-DC-A的大小为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,的中点,,且,又.

(1) 证明:;
(2) 证明:;
(3) 求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知ABCD-A1B1C1D1为单位正方体,黑白两个蚂蚁从点A出发沿棱向前爬行,每走完一条棱称为“走完一段”,白蚂蚁爬行的路线是AA1→A1D1→……,黑蚂蚁爬行的路线是AB→BB1→……,它们都遵循如下规则:所爬行的第与第段所在直线必须是异面直线(其中是自然数),设白,黑蚂蚁都走完2011段后各停止在正方体的某个顶点处,这时黑,白两蚂蚁的距离是(   )
A.1B.C.D.0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知为平行四边形,是长方形,的中点,平面平面

(Ⅰ)求证:
(Ⅱ)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在斜三棱柱ABC-A1B1C1中,A0,B0,分别为侧棱AA1,BB1上的点,且知BB0=A0A1,过A0,B0,C1的截面将三棱柱分成上下两个部分体积之比为(   )
A.2:1B.4:3C.3:2D.1:1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)
如图,多面体中,两两垂直,平面平面
平面平面.
(1)证明四边形是正方形;
(2)判断点是否四点共面,并说明为什么?
(3)连结,求证:平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

18.(本小题满分13分)如图,平面⊥平面,,,

直线与直线所成的角为,又。     
(1)求证:
(2)求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若某多面体的三视图(单位:cm)如右图所示,则此多面体的体积是      cm3

查看答案和解析>>

同步练习册答案