精英家教网 > 高中数学 > 题目详情
,将函数在区间内的全部极值点按从小到大的顺序排成数列.
(1)求数列的通项公式;
(2)设,数列的前项和为,求.
(1);(2).

试题分析:(1)先根据三角函数的恒等变换化简,得,再根据三角函数的性质找到极值点,利用等差数列的性质写出数列的通项公式;(2)先根据(1)中的结果写出的通项公式,然后写出的解析式,在构造出,利用错位相减法求,计算量比较大,要细心.
试题解析:(1),其极值点为,      2分
它在内的全部极值点构成以为首项,为公差的等差数列,         4分
所以;             6分
(2),         8分
所以

相减,得
所以.                 12分项和;5、等比数列的前项和.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

=(2cos,1),=(cos,sin2),·R.
⑴若=0且[,],求的值;
⑵若函数 ()与的最小正周期相同,且的图象过点(,2),求函数的值域及单调递增区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是关于的方程的两个根.
(1)求的值;
(2)求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量,且,其中A、B、C是ABC的内角,分别是角A,B,C的对边。
(Ⅰ)求角C的大小;
(Ⅱ)求的取值范围;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数的最小正周期为,其图像经过点
(1)求的解析式;
(2)若为锐角,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知为坐标原点,向量,点满足.
(Ⅰ)记函数,讨论函数的单调性,并求其值域;
(Ⅱ)若三点共线,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在锐角中,.
(I) 求角的大小;
(II)求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量向量与向量的夹角为,且.
(1)求向量 ;  
(2)若向量共线,向量,其中的内角,且依次成等差数列,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列个命题:
①若函数为偶函数,则
②已知,函数上单调递减,则的取值范围是
③函数(其中)的图象如图所示,则的解析式为

④设的内角所对的边为,则
⑤设,函数的图象向右平移个单位后与原图象重合,则的最小值是.
其中正确的命题为____________.

查看答案和解析>>

同步练习册答案