精英家教网 > 高中数学 > 题目详情
个等差数列的第6项是5,第3项与第8项的和也是5,则这个等差数列的第5项为

A.5                              B.0                              C.10                                   D.-5

解析:由已知

解得d=5,a1=-20.

a5=-20+4×5=0.

答案:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有n个首项都是1的等差数列,设第m个数列的第k项为amk(m,k=1,2,3,…,n,n≥3),公差为dm,并且a1n,a2n,a3n,…,ann成等差数列.
(Ⅰ)证明dm=p1d1+p2d2(3≤m≤n,p1,p2是m的多项式),并求p1+p2的值;
(Ⅱ)当d1=1,d2=3时,将数列dm分组如下:(d1),(d2,d3,d4),(d5,d6,d7,d8,d9),…(每组数的个数构成等差数列).设前m组中所有数之和为(cm4(cm>0),求数列{2cmdm}的前n项和Sn
(Ⅲ)设N是不超过20的正整数,当n>N时,对于(Ⅱ)中的Sn,求使得不等式
150
(Sn-6)>dn
成立的所有N的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

有n(n≥3,n∈N*)个首项为1,项数为n的等差数列,设其第m(m≤n,m∈N*)个等差数列的第k项为amk(k=1,2,3,…,n),且公差为dm.若d1=1,d2=3,a1n,a2n,a3n,…,ann也成等差数列.
(Ⅰ)求dm(3≤m≤n)关于m的表达式;
(Ⅱ)将数列dm分组如下:(d1),(d2,d3,d4),(d5,d6,d7,d8,d9)…,(每组数的个数组成等差数列),设前m组中所有数之和为(cm4(cm>0),求数列{2cmdm}的前n项和Sn
(Ⅲ)设N是不超过20的正整数,当n>N时,对于(Ⅱ)中的Sn,求使得不等式
150
(Sn-6)>dn
成立的所有N的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}是公比大于1的等比数列,a2=6,S3=26.
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列.设第n个等差数列的前n项和是An.求关于n的多项式g(n),使得An=g(n)dn对任意n∈N+恒成立;
(3)对于(2)中的数列d1,d2,d3,…,dn,…,这个数列中是否存在不同的三项dm,dk,dp(其中正整数m,k,p成等差数列)成等比数列?若存在,求出这样的三项;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:朝阳区一模 题型:解答题

有n(n≥3,n∈N*)个首项为1,项数为n的等差数列,设其第m(m≤n,m∈N*)个等差数列的第k项为amk(k=1,2,3,…,n),且公差为dm.若d1=1,d2=3,a1n,a2n,a3n,…,ann也成等差数列.
(Ⅰ)求dm(3≤m≤n)关于m的表达式;
(Ⅱ)将数列dm分组如下:(d1),(d2,d3,d4),(d5,d6,d7,d8,d9)…,
(每组数的个数组成等差数列),设前m组中所有数之和为(cm4(cm>0),求数列{2cmdm}的前n项和Sn
(Ⅲ)设N是不超过20的正整数,当n>N时,对于(Ⅱ)中的Sn,求使得不等式
1
50
(Sn-6)>dn
成立的所有N的值.

查看答案和解析>>

同步练习册答案