【题目】在
中,
,
,
分别为角
,
,
所对的边,
为
的面积,且
.
(I)求角
的大小;
(II)若
,
,
为
的中点,且
,求
的值.
【答案】解:(I)由已知得
,
∴
.
即
.
∴
.
又∵
,
,
(II)由
得:
,又∵
为
的中点,∴
,
,
∴
,即
.
又∵
,
∴
.
又∵
,∴
,
,
∴ ![]()
【解析】(1)由题中已知的三角形面积公式,利用同角三角函数的基本关系式可求得tan A的值,再结合角A的范围即可求出A的值。(2)由D为BC的中点可得出DB=DC、AD的值,利用cos ∠ A D B = cos ∠ A D C结合余弦定理
整理可得 b2 + c2= 20,由(1)的结论结合余弦定理
可求出 b c的值,联立两式可分别别求出b、c的值,再利用正弦定理即可解得sinc的结果。
【考点精析】本题主要考查了余弦定理的定义的相关知识点,需要掌握余弦定理:
;
;
才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知椭圆两焦点
,并且经过点
.
(1)求椭圆的方程;
(2)若过点A(0,2)的直线l与椭圆交于不同的两点M、N(M在A、N之间),试求△OAM与△OAN面积之比的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
与g(x)=cos(2x+φ)
,它们的图象有一个横坐标为
的交点.
(Ⅰ)求φ的值;
(Ⅱ)将f(x)图象上所有点的横坐标变为原来的
倍,得到h(x)的图象,若h(x)的最小正周期为π,求ω的值和h(x)的单调递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知下列命题:( )
①向量
,
不共线,则向量
与向量
一定不共线
②对任意向量
,
,则
恒成立
③在同一平面内,对两两均不共线的向量
,
,
,若给定单位向量
和正数
,总存在单位向量
和实数
,使得 ![]()
则正确的序号为( )
A.①②③
B.①③
C.②③
D.①②
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程记录的产量
(吨)与相应的生产能耗
(吨标准煤)的几组对照数据:
| 3 | 4 | 5 | 6 |
| 2.5 | 3 | 4 | 4.5 |
参考公式: ![]()
(1)已知产量
和能耗
呈线性关系,请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
;
(2)已知该厂技改前100吨甲产品的生产耗能为90吨标准煤,试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数y=2cos(x﹣
)的图象上所有的点的横坐标缩短到原来的
倍(纵坐标不变),得到函数y=g(x)的图象,则函数y=g(x)的图象( )
A.关于点(﹣
,0)对称
B.关于点(
,0)对称
C.关于直线x=﹣
对称
D.关于直线x=
对称
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=﹣
sinx
cosx+1
(1)求函数f(x)的最小正周期和单调递增区间; (Ⅱ)若x∈[0,
],且f(x)=
,求cosx的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为正整数集的函数f(x)=
,f1(x)=f(x),fn(x)=f[fn﹣1(x)].若fn(21)=1,则n=;若f4(x)=1,则x所有的值构成的集合为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,a2n=n﹣an , a2n+1=an+1(n∈N*),则a1+a2+a3+…+a40等于( )
A.222
B.223
C.224
D.225
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com