精英家教网 > 高中数学 > 题目详情
(2008•卢湾区一模)C2n2+C2n4+…+C2n2k+…+C2n2n的值为(  )
分析:根据C2n0+C2n2+C2n4+…+C2n2k+…+C2n2n =C2n1+C2n3+…+C2n2n-1=22n-1 ,及C2n0=1,可得所求的式子的值.
解答:解:由于C2n0+C2n2+C2n4+…+C2n2k+…+C2n2n =22n-1,C2n0=1,
故C2n2+C2n4+…+C2n2k+…+C2n2n =22n-1 -1,
故选:D.
点评:本题主要考查二项式系数的性质,利用了 C2n0+C2n2+C2n4+…+C2n2k+…+C2n2n =C2n1+C2n3+…+C2n2n-1=22n-1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•卢湾区一模)函数y=2-x+1-3(x>1)的反函数为
y=1-log2(x+3)(-3<x<2)
y=1-log2(x+3)(-3<x<2)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•卢湾区一模)在二项式(
3x
-
1
2
x
)9
的展开式中,第四项为
-
21
x
2
-
21
x
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•卢湾区一模)若α为第二象限角,则cotα
sec2α-1
+cosα
1-sin2α
+sinα
1-cos2α
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•卢湾区一模)(理)袋中有同样的球5个,其中3个红色,2个黄色,现从中随机且不放回地摸球,每次摸1个,当两种颜色的球都被摸到时,即停止摸球,记随机变量ξ为此时已摸球的次数,求:
(1)随机变量ξ的概率分布; 
(2)随机变量ξ的数学期望与方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•卢湾区一模)在△ABC中,已知∠A=45°,∠B=75°,点D在AB上,且CD=10.
(1)若点D与点A重合,试求线段AB的长;
(2)在下列各题中,任选一题,并写出计算过程,求出结果.
①(解答本题,最多可得6分)若CD⊥AB,求线段AB的长;
②(解答本题,最多可得8分)若CD平分∠ACB,求线段AB的长;
③(解答本题,最多可得10分)若点D为线段AB的中点,求线段AB的长.

查看答案和解析>>

同步练习册答案