精英家教网 > 高中数学 > 题目详情
精英家教网如图,在棱长为1的正方体ABCD-A1B1C1D1中,E,F分别为棱AA1,C1D1的中点,G是侧面BCC1B1的中心,则空间四边形AEFG在正方体的六个面上的射影图形面积的最大值是(  )
A、
1
4
B、
3
8
C、
1
2
D、
5
8
分析:在前后面上的射影,在左右面上的射影,在上下面上的射影,这三种不同的情况下,只有在前后面上的射影正好占到一个面的一半,得到结果.
解答:解:AEFG在正方体的六个面上的射影有三种情况,
即在前后面上的射影,在左右面上的射影,在上下面上的射影,
这三种不同的情况下,只有在前后面上的射影正好占到一个面的一半,
∴射影到面积的最大值是
1
2

故选C.
点评:本题考查平行投影即平行投影作图法,本题解题的关键是看出三种不同的情况下的射影,看出射影在三个不同的面上的面积.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在棱长都相等的正三棱柱ABC-A1B1C1中,D,E分别为AA1,B1C的中点.
(1)求证:DE∥平面ABC;
(2)求证:B1C⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一棱长为2的正四面体O-ABC的顶点O在平面α内,底面ABC平行于平面α,平面OBC与平面α的交线为l.
(1)当平面OBC绕l顺时针旋转与平面α第一次重合时,求平面OBC转过角的正弦
值.
(2)在上述旋转过程中,△OBC在平面α上的投影为等腰△OB1C1(如图1),B1C1的中点为O1.当AO⊥平面α时,问在线段OA上是否存在一点P,使O1P⊥OBC?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在棱长都相等的正三棱柱ABC-A1B1C1中,D,E分别为AA1,B1C的中点.
(1)求证:DE∥平面ABC;
(2)求证:B1C⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江苏省南京市金陵中学高三(上)8月月考数学试卷(解析版) 题型:解答题

如图,在棱长都相等的正三棱柱ABC-A1B1C1中,D,E分别为AA1,B1C的中点.
(1)求证:DE∥平面ABC;
(2)求证:B1C⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源:2012年安徽省合肥八中高考数学一模试卷(理科)(解析版) 题型:解答题

如图,一棱长为2的正四面体O-ABC的顶点O在平面α内,底面ABC平行于平面α,平面OBC与平面α的交线为l.
(1)当平面OBC绕l顺时针旋转与平面α第一次重合时,求平面OBC转过角的正弦
值.
(2)在上述旋转过程中,△OBC在平面α上的投影为等腰△OB1C1(如图1),B1C1的中点为O1.当AO⊥平面α时,问在线段OA上是否存在一点P,使O1P⊥OBC?请说明理由.

查看答案和解析>>

同步练习册答案