精英家教网 > 高中数学 > 题目详情
(理)如果f(x)在某个区间I内满足:

对任意的x1、x2∈I,都有[f(x1)+f(x2)]≥f(),则称f(x)在I上为下凸函数.

已知函数f(x)=-alnx.

(1)证明当a>0时,f(x)在(0,+∞)上为下凸函数;

(2)若f′(x)为f(x)的导函数,且x∈[,2]时,|f′(x)|<1,求实数a的取值范围.

(文)如果f(x)在某个区间I内满足:

对任意的x1、x2∈I,都有[f(x1)+f(x2)]≥f(),则称f(x)在I上为下凸函数,已知函数f(x)=ax2+x.

(1)证明当a>0时,f(x)在R上为下凸函数;

(2)若x∈(0,1)时,|f(x)|≤1,求实数a的取值范围.

(理)(1)证明:任取x1、x2∈(0,+∞),

[f(x1)+f(x2)]

=-alnx1+-alnx2

=-aln,                                                         

,                                          

∵x12+x22≥2x1x2,∴(x1+x2)2≥4x1x2.

又x1>0,x2>0,∴.                                            

,a>0,

∴-aln≥-aln,                                                  

[f(x1)+f(x2)]≥f().                                              

∴f(x)为(0,+∞)上的下凸函数.

(2)解:f′(x)=,                                                    

∵|f′(x)|<1,即||<1,

∴-(x+)<a<x-.                                                        

∵x∈[,2]时,|f′(x)|<1恒成立,

∴a∈(-2,).                                                            

(文)(1)证明:f(x1)+f(x2)-2f()

=ax12+x1+ax22+x2-2[a()2-

=,                                                           

∵a>0,∴[f(x1)+f(x2)]≥f().

∴当a>0时,f(x)为R上的下凸函数.                                         

(2)解:∵|f(x)|≤1,

∴-1≤ax2+x≤1,

≤a≤.                                                       

∵x∈(0,1),

∴-2≤a≤0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(07年全国卷Ⅱ理)(12分)已知函数f(x)=x3-x

(1)求曲线y=f(x)在点M(t, f(t))处的切线方程

(2)设a>0,如果过点(a, b)可作曲线y=f(x)的三条切线,证明:-a<b<f(a)

查看答案和解析>>

科目:高中数学 来源: 题型:

(07年全国卷Ⅱ理)(12分)已知函数f(x)=x3-x

(1)求曲线y=f(x)在点M(t, f(t))处的切线方程

(2)设a>0,如果过点(a, b)可作曲线y=f(x)的三条切线,证明:-a

查看答案和解析>>

科目:高中数学 来源: 题型:

(福建卷理22)已知函数f(x)=ln(1+x)-x1

 (Ⅰ)求f(x)的单调区间;

(Ⅱ)记f(x)在区间n∈N*)上的最小值为bxan=ln(1+n)-bx.

(Ⅲ)如果对一切n,不等式恒成立,求实数c的取值范围;

(Ⅳ)求证:  

查看答案和解析>>

科目:高中数学 来源: 题型:

(福建卷理22)已知函数f(x)=ln(1+x)-x1

 (Ⅰ)求f(x)的单调区间;

(Ⅱ)记f(x)在区间n∈N*)上的最小值为bxan=ln(1+n)-bx.

(Ⅲ)如果对一切n,不等式恒成立,求实数c的取值范围;

(Ⅳ)求证:  

查看答案和解析>>

同步练习册答案