精英家教网 > 高中数学 > 题目详情
已知
m
=(2cosx+2
3
sinx,1),
n
=(cosx,-y),且
m
n

(1)将y表示为x的函数f(x),并求f(x)的单调增区间;
(2)已知a,b,c分别为△ABC的三个内角A,B,C对应的边长,若f(
A
2
)=3,且a=2,b+c=4,求△ABC的面积.
(1)由题意可得(2cosx+2
3
sinx)cosx-y=0,
即y=f(x)=(2cosx+2
3
sinx)cosx=2cos2x+2
3
sinxcosx
=1+cos2x+
3
sin2x=1+2sin(2x+
π
6
),
由2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
,得kπ-
π
3
≤x≤kπ+
π
6
,k∈Z,
故f(x)的单调增区间为[kπ-
π
3
,kπ+
π
6
],k∈Z
(2)由(1)可知f(x)=1+2sin(2x+
π
6
),
故f(
A
2
)=1+2sin(A+
π
6
)=3,解得sin(A+
π
6
)=1
故可得A+
π
6
=
π
2
,解得A=
π
3

由余弦定理可得22=b2+c2-2bccosA,
化简可得4=b2+c2-bc=(b+c)2-3bc=16-3bc,
解得bc=4,故△ABC的面积S=
1
2
bcsinA
=
1
2
×4×
3
2
=
3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•济南一模)已知
m
=(2cosx+2
3
sinx,1),
n
=(cosx,-y),且
m
n

(1)将y表示为x的函数f(x),并求f(x)的单调增区间;
(2)已知a,b,c分别为△ABC的三个内角A,B,C对应的边长,若f(
A
2
)=3,且a=2,b+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
m
=(2cosx+2
3
sinx,1)
n
=(cosx,-y)
,满足
m
n
=0

(1)将y表示为x的函数f(x),并求f(x)的最小正周期和单调递增区间;
(2)已知a,b,c分别为△ABC的三个内角A,B,C对应的边长,若f(
A
2
)=3
,且a=2,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
m
=(2cosx,
3
),
n
=(sinx,cos2x)
,记函数f(x)=
m
n

(1)求f(x)的最小正周期和单调增区间;
(2)当x∈[0,
π
4
]
时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
m
=(cosx,2sinx),
n
=(2cosx,-sinx),f(x)=
m
n

(1)求f(-
2009
3
π)的值;
(2)当x∈[0,
π
2
]时,求g(x)=
1
2
f(x)+sin2x的最大值和最小值.

查看答案和解析>>

同步练习册答案