精英家教网 > 高中数学 > 题目详情
已知椭圆+=1(a>b>0)的左焦点F(-c,0)是长轴的一个四等分点,点A、B分别为椭圆的左、右顶点,过点F且不与y轴垂直的直线l交椭圆于C、D两点,记直线AD、BC的斜率分别为k1,k2
(1)当点D到两焦点的距离之和为4,直线l⊥x轴时,求k1:k2的值;
(2)求k1:k2的值.
【答案】分析:(1)由题意椭圆的离心率,2a=4,由此知椭圆方程为,直线l:x=-1,A(-2,0),B(2,0),
故C(-1,,D(-1,-)或C(-1,-),D(-1,),由此能得到k1:k2=3.
(2)因为,所以a=2c,b=,椭圆方程为3x2+4y2=12c2,A(-2c,0),B(2c,0),直线l:x=my-c,设C(x1,y1),D(x2,y2),由,消x得,(4+3m2)y2-6mxy-9c2=0,再由韦达定理进行求解.
解答:解:(1)由题意椭圆的离心率,2a=4,所以a=2,c=1,b=
故椭圆方程为,…(3分),
则直线l:x=-1,A(-2,0),B(2,0),
故C(-1,,D(-1,-)或C(-1,-),D(-1,),
当点C在x轴上方时,
所以k1:k2=3,
当点C在x轴下方时,同理可求得k1:k2=3,
综上,k1:k2=3为所求.…(6分)
(2)解:因为,所以a=2c,b=
椭圆方程为3x2+4y2=12c2,A(-2c,0),B(2c,0),直线l:x=my-c,
设C(x1,y1),D(x2,y2),
,消x得,(4+3m2)y2-6mxy-9c2=0,
所以…(8分)
,①
,及,…(9分)
=
将①代入上式得=,…(10分)
注意到y1y20,得,…(11分)
所以k1:k2=3为所求.…(12分)
点评:本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与椭圆的相关知识,解题时要注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆=1(ab>0)的离心率为,则椭圆方程为(  )

A.=1

B.=1

C.=1

D.=1

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖北省武汉市六校高三(上)第一次联考数学试卷(文科)(解析版) 题型:填空题

已知椭圆+=1(a>b>0)的中心为O,右焦点为F、右顶点为A,右准线与x轴的交点为H,则的最大值为   

查看答案和解析>>

科目:高中数学 来源:2012年安徽省合肥八中高考数学一模试卷(理科)(解析版) 题型:解答题

已知椭圆+=1(a>b>0)的中心为O,右焦点为F、右顶点为A,右准线与x轴的交点为H,则的最大值为   

查看答案和解析>>

科目:高中数学 来源:2012年安徽省合肥八中高考数学一模试卷(文科)(解析版) 题型:解答题

已知椭圆+=1(a>b>0)的中心为O,右焦点为F、右顶点为A,右准线与x轴的交点为H,则的最大值为   

查看答案和解析>>

科目:高中数学 来源:2010年河南省高二上学期12月份考试数学卷(文理) 题型:选择题

已知椭圆=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF⊥x轴,直线AB交y轴于点P,若(应为PB),则离心率为

A、         B、         C、           D、

 

查看答案和解析>>

同步练习册答案