精英家教网 > 高中数学 > 题目详情

若函数数学公式的图象在数学公式处的切线l与圆C:x2+y2=1相交,则点P(m,n)与圆C的位置关系是


  1. A.
    圆内
  2. B.
    圆外
  3. C.
    圆上
  4. D.
    圆内或圆外
B
分析:根据f′(0)求出切线的斜率,表示出切线方程,因为切线l与圆相交得到圆心到直线的距离小于半径列出关系式,得到根据点到圆心的距离与半径比较大小得到点与圆C的位置关系.
解答:函数f(x)图象在M处切线l的斜率k=f′(0)=-e-m×0=-,∴切线l的方程为mx+ny=1,
∵与x2+y2=1相交,所以圆心(0,0)到切线l的距离d===r,解得>1
而P(m,n)到圆心(0,0)的距离=>1,所以点在圆外.
故选B
点评:本题是一道综合题,要求学生会根据d与r的大小判断点与圆的位置关系,理解直线与圆垂直时圆心到直线的距离等于半径,以及灵活运用点到直线的距离公式化简求值.会根据导函数求曲线上某点切线的斜率.
练习册系列答案
相关习题

科目:高中数学 来源:2011届福建省莆田十中高三5月月考调理科数学 题型:解答题

本小题满分14分)
三次函数的图象如图所示,直线BD∥AC,且直线BD与函数图象切于点B,交于点D,直线AC与函数图象切于点C,交于点A.

(1)若函数f(x)为奇函数且过点(1,-3),当x<0时求的最大值 ;
(2)若函数在x=1处取得极值-2,试用c表示a和b,并求的单调递减区间;
(3)设点A、B、C、D的横坐标分别为
求证

查看答案和解析>>

科目:高中数学 来源:2011-2012学年内蒙古呼伦贝尔市高三第三次模拟考试理科数学试卷 题型:解答题

(本小题满分12分)三次函数的图象如图所示,直线BD∥AC,且直线BD与函数图象切于点B,交于点D,直线AC与函数图象切于点C,交于点A.

(1)若函数f(x)为奇函数且过点(1,-3),当x<0时求的最大值 ;

(2)若函数在x=1处取得极值-2,试用c表示a和b,并求的单调递减区间;

(3)设点A、B、C、D的横坐标分别为求证   

 

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题

本小题满分14分)

三次函数的图象如图所示,直线BD∥AC,且直线BD与函数图象切于点B,交于点D,直线AC与函数图象切于点C,交于点A.

(1)若函数f(x)为奇函数且过点(1,-3),当x<0时求的最大值 ;

(2)若函数在x=1处取得极值-2,试用c表示a和b,并求的单调递减区间;

(3)设点A、B、C、D的横坐标分别为

求证

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省宁波市高三(下)4月月考数学试卷(理科)(解析版) 题型:解答题

已知函数f(x)=x3-x2-3x,g(x)=ax2-3x+b,(a,b∈R,且a≠0,b≠0).满足f(x)与g(x)的图象在x=x处有相同的切线l.
(I)若a=,求切线l的方程;
(II)已知m<x<n,记切线l的方程为:y=k(x),当x∈(m,n)且x≠x时,总有[f(x)-k(x)]•[g(x)-k(x)]>0,则称f(x)与g(x)在区间(m,n)上“内切”,若f(x)与g(x)在区间(-3,5)上“内切”,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省宁波市高三(下)4月月考数学试卷(文科)(解析版) 题型:解答题

已知函数f(x)=x3-x2-3x,g(x)=ax2-3x+b,(a,b∈R,且a≠0,b≠0).满足f(x)与g(x)的图象在x=x处有相同的切线l.
(I)若a=,求切线l的方程;
(II)已知m<x<n,记切线l的方程为:y=k(x),当x∈(m,n)且x≠x时,总有[f(x)-k(x)]•[g(x)-k(x)]>0,则称f(x)与g(x)在区间(m,n)上“内切”,若f(x)与g(x)在区间(-3,5)上“内切”,求实数a的取值范围.

查看答案和解析>>

同步练习册答案