精英家教网 > 高中数学 > 题目详情
已知m∈R,函数f(x)=(x2+mx+m)ex
(1)若函数没有零点,求实数m的取值范围;
(2)当m=0时,求证f(x)≥x2+x3
分析:(1)由题意可得方程 x2+mx+m=0 无解,故有△=m2-4m<0,由此求得实数m的取值范围.
(2)当m=0时,f(x)=x2 •ex,要证的不等式等价于x2(ex -x-1)≥0.令g(x)=ex -x-1,利用导数可得g(x)=ex -x-1 在(-∞,+∞)上的最小值为g(0)=0,g(x)≥0恒成立,x2(ex -x-1)≥0成立,从而得到要证的不等式成立.
解答:解:(1)∵m∈R,函数f(x)=(x2+mx+m)ex 没有零点,
∴方程 x2+mx+m=0 无解,∴△=m2-4m<0,解得 0<m<4,
故实数m的取值范围为(0,4).
(2)当m=0时,f(x)=x2 •ex,不等式等价于 x2 •ex≥x2+x3
等价于 x2 •ex-x2 -x3≥0,等价于 x2(ex -x-1)≥0.
令g(x)=ex -x-1,当x<0时,g′(x)=ex -1<0,故g(x)=ex -x-1 在(-∞,0)上是减函数.
当x>0时,g′(x)=ex -1>0,故g(x)=ex -x-1 在(0,+∞)上是增函数.
故g(x)=ex -x-1 在(-∞,+∞)上的最小值为g(0)=0,故g(x)≥0恒成立,
∴x2(ex -x-1)≥0成立,故要证的不等式成立.
点评:本题主要考查函数的零点与方程的根的关系,体现了化归与转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知m∈R,函数f(x)=(x2+mx+m)ex
(1)若函数f(x)没有零点,求实数m的取值范围;
(2)若函数f(x)存在极大值,并记为g(m),求g(m)的表达式;
(3)当m=0时,求证:f(x)≥x2+x3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m∈R,函数f(x)=(x2+mx+m)ex
(Ⅰ)若m=-1,求函数f(x)的极值;
(Ⅱ)若函数f(x)没有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•大连一模)已知m∈R,函数f(x)=mx2-2ex
(Ⅰ)当m=2时,求函数f(x)的单调区间;
(Ⅱ)若f(x)有两极值点a,b(a<b),(ⅰ)求m的取值范围;(ⅱ)求证:-e<f(a)<-2.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•大连一模)已知m∈R,函数f(x)=mx2-2ex
(Ⅰ)当m=2时,求函数f(x)的单调区间;
(Ⅱ)若f(x)有两个极值点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m∈R,函数f(x)=mx-
m-1
x
-lnx
g(x)=
1
2
+lnx

(I)求g(x)的极小值;
(Ⅱ)若y=f(x)-g(x)在[1,+∞)上为单调增函数,求实数m的取值范围;
(Ⅲ)证明:
ln2
2
+
ln3
3
+
ln4
4
+…+
lnn
n
n2
2(n+1)
(n∈N*)

查看答案和解析>>

同步练习册答案