精英家教网 > 高中数学 > 题目详情
17.已知数列{an}满足a1=1,an+1•an=2n(n∈N*),则S2017=(  )
A.21010-1B.21010-3C.3•21008-1D.21009-3

分析 由数列的递推公式得到$\frac{{a}_{n+1}}{{a}_{n-1}}$=2,即可得到从第2项开始,每隔一项,即偶数项,以2为首项,以2为公比的等比数列,从第1项开始,每隔一项,即为奇数项,以1为首项,以2为公比的等比数列,分别根据等比数列的求和公式计算即可.

解答 解:∵a1=1,an+1•an=2n(n∈N*),
∴当n=1时,a2•a1=2,∴a2=2,
∴an•an-1=2n-1(n≥2),
∴$\frac{{a}_{n+1}}{{a}_{n-1}}$=2,
∴从第2项开始,每隔一项,即偶数项,以2为首项,以2为公比的等比数列,
从第1项开始,每隔一项,即为奇数项,以1为首项,以2为公比的等比数列,
∴S2017=$\frac{1×(1-{2}^{1009})}{1-2}$+$\frac{2×(1-{2}^{1008})}{1-2}$=21009-1+21009-2=21010-3,
故选:B

点评 本题考查了数列的递推公式和等比数列的求和公式,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知f(x)、g(x)、h(x)均为一次函数,若对实数x满足:|f(x)|+|g(x)|+h(x)=$\left\{\begin{array}{l}{4x+2}&{x≥2}\\{未知}&{-\frac{1}{2}≤x<2}\\{-2x+4}&{x<-\frac{1}{2}}\end{array}\right.$,则h(x)的解析式为(  )
A.2x+6B.6x-2C.3x-1D.x+3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设命题p:方程x2+2ax+1=0有两个不相等的负根,命题q:不等式x2+2ax+2a≤0的解集为空集,若命题p∧q为假,命题p∨q为真,则a的取值范围为a≥2或0<a≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=x2-2xf′(-1),则f′(-1)=$-\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知抛物线方程为y=4x2,则抛物线的焦点坐标为$({0,\frac{1}{16}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.给出下列六个命题:
①两个向量相等,则它们的起点相同,终点相同;
②若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$;
③若$\overrightarrow{AB}$=$\overrightarrow{DC}$,则A,B,C,D四点构成平行四边形;
④在平行四边形ABCD中,一定有$\overrightarrow{AB}$=$\overrightarrow{DC}$;
⑤若$\overrightarrow{m}$=$\overrightarrow{n}$,$\overrightarrow{n}$=$\overrightarrow{p}$,则$\overrightarrow{m}$=$\overrightarrow{p}$;
⑥若向$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$.
其中错误的命题有①②③⑥.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数$f(x)=\left\{\begin{array}{l}x+1,x≤0\\{log_2}x,x>0\end{array}\right.$,则函数y=f[f(x)]-1的图象与x轴的交点个数为(  )
A.3个B.2个C.0个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图所示,在直角梯形ABCD中,AB=7,AD=2,BC=3.如果AB边上的点P使得以P,A,D为顶点的三角形和以P,B,C为顶点的三角形相似,那么这样的点P有(  )
A.1个B.2个C.3个D.2个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知$\frac{1}{3}$≤a≤1,若函数f(x)=ax2-2x在[1,3]上的最大值为M(a),最小值为N(a)
(1)求N(a)的表达式;
(2)求M(a)的表达式并说出其最值.

查看答案和解析>>

同步练习册答案