精英家教网 > 高中数学 > 题目详情
如图所示,四棱锥F-ABCD的底面ABCD是菱形,其对角线AC=2,BD=
2
.AE、CF都与平面ABCD垂直,AE=1,CF=2.
(1)求二面角B-AF-D的大小;
(2)求四棱锥E-ABCD与四棱锥F-ABCD公共部分的体积.
精英家教网
(1)连接AC、BD交于菱形的中心O,过O作OG⊥AF,G为垂足,连接BG、DG.
由BD⊥AC,BD⊥CF得BD⊥平面ACF,故BD⊥AF.
于是AF⊥平面BGD,所以BG⊥AF,DG⊥AF,∠BGD为二面角B-AF-D的平面角.
由FC⊥AC,FC=AC=2,得∠FAC=
π
4
,OG=
2
2

由OB⊥OG,OB=OD=
2
2
,得∠BGD=2∠BGO=
π
2

(2)连接EB、EC、ED,设直线AF与直线CE相交于点H,
则四棱锥E-ABCD与四棱锥F-ABCD的公共部分为四棱锥H-ABCD.
过H作HP⊥平面ABCD,P为垂足.
因为EA⊥平面ABCD,FC⊥平面ABCD,
所以平面ACEF⊥平面ABCD,从而P∈AC,HP⊥AC.
HP
CF
+
HP
AE
=
AP
AC
+
PC
AC
=1,得HP=
2
3

又因为S菱形ABCD=
1
2
AC•BD=
2

故四棱锥H-ABCD的体积V=
1
3
S菱形ABCD•HP=
2
2
9
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=
3
,点F是PB的中点,点E在边BC上移动.
(Ⅰ)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(Ⅱ)当E为BC中点时,求异面直线PC与DE所成角的余弦值;
(Ⅲ)求证:无论点E在边BC的何处,都有PE⊥AF.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别为PC、PD、BC的中点.
(1)求证:PA⊥EF;
(2)求二面角D-FG-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AD=2,E、F、G分别为PC、PD、BC的中点.
(Ⅰ)求证:PA∥平面EFG;
(Ⅱ)求三棱锥P-EFG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,四棱锥F-ABCD的底面ABCD是菱形,其对角线AC=2,BD=
2
.AE、CF都与平面ABCD垂直,AE=1,CF=2.
(1)求二面角B-AF-D的大小;
(2)求四棱锥E-ABCD与四棱锥F-ABCD公共部分的体积.

查看答案和解析>>

同步练习册答案